

Siège social et site de Liège :

Rue du Chéra, 200 B-4000 Liège

Tél: +32(0)4 229 83 11 Fax: +32(0)4 252 46 65

Site de Colfontaine :

Zoning A. Schweitzer Rue de la Platinerie B-7340 Colfontaine Tél: +32(0)65 61 08 11

Fax: +32(0)65 61 08 08

Liège, le 21 mars 2013

Département de la Police et des Contrôles (DGO3)

RESEAU DE CONTRÔLE DES C.E.T. EN REGION WALLONNE

C.E.T. de Chapois Cinquième campagne de contrôle - Partie air (2012)

Rapport 3666/2012

Ce rapport contient 27 pages, 6 plans et 3 annexes

E. Bietlot, S. Garzaniti Attachés, Cellule Déchets & SAR C. Collart Responsable, Cellule Déchets & SAR

Remarque : Ce rapport ne peut être reproduit, sinon en entier, sauf accord de l'Institut

Contact

Pour toute information complémentaire, prière de prendre contact avec l'ISSeP avec les moyens et adresses mentionnées ci-dessous

ISSeP (Institut Scientifique de Service Public) Rue du Chéra, 200 B4000 LIEGE

Tél.: + 32 4 229 83 11 Fax: + 32 4 252 46 65

Courriels:

e.bietlot@issep.be

s.garzaniti@issep.be

c.collart@issep.be

RESEAU DE CONTRÔLE DES C.E.T. EN REGION WALLONNE

C.E.T. de Chapois Cinquième campagne de contrôle - Partie air (2012)

Date	22/3/13
Maître d'ouvrage	Département de la Police et des Contrôles (DGO3)
Référence	3666/2012
Туре	Rapport Définitif
Auteurs	E. Bietlot, S. Garzaniti, C. Collart

Table des matières

l	INT	RODUC	TION	6
2	ETU	DE PRÉ	EPARATOIRE	7
	2.1	Objec	etifs	7
	2.2	Descr	iption du site et de ses alentours	7
		2.2.1	Localisation	7
		2.2.2	Situation administrative	7
		2.2.3	Description des installations actuelles	7
		2.2.4	Historique de l'exploitation	8
		2.2.5	Etudes antérieures	8
	2.3	Etude	es géologique, hydrogéologique et hydrographique	8
	2.4	Sensil	bilité du site	8
3	STR	ATÉGIE	E GLOBALE D'ÉCHANTILLONNAGE	10
4	BIO	GAZ ET	EMISSIONS DES INSTALLATIONS	11
	4.1	Descr	ription des installations	11
	4.2	Mesu	res et contrôles	11
	4.3	Résul	tats	12
		4.3.1	Biogaz	12
		4.3.2	Fumées du moteur	14
	4.4	Interp	prétation des résultats	14
		4.4.1	Composition du biogaz	14
		4.4.2	Composition des fumées du moteur	15
5	MES	URE DI	ES EMISSIONS SURFACIQUES ET ESTIMATION DES FLUX	16
	5.1	Conte	exte	16
	5.2		e I : Phase préparatoire	16
		5.2.1	Campagne 2004	16
		5.2.2	Campagne 2005	17
		5.2.3	Campagne 2006	17
		5.2.4	Campagne de 2009	18
		5.2.5	Données collectées lors de la campagne d'août 2012	18
	5.3		e II : Stratégie d'échantillonnage	18
	5.4		e III : Mesures et cartographie des flux	19
		5.4.1	Mesures	19

		5.4.2 5.4.3	Cartographie des flux	21 21
6	OLIA			
O	•			24
				24
	6.2	Autoc	contrôles de la qualité de l'air ambiant	24
7	CON	CLUSIC	ONS	26
	7.1	Bioga	z et émissions des moteurs	26
	7.2	_		26
	7.3		•	26
5.4.3 Calcul des flux totaux 6 QUALITÉ DE L'AIR 6.1 Résultats de la campagne ISSeP de 2007 6.2 Autocontrôles de la qualité de l'air ambiant 7 CONCLUSIONS 7.1 Biogaz et émissions des moteurs 7.2 Emissions surfaciques	27			
Fig	ures			
Figu	re : Pan	oramiqu	ues du site après sa réhabilitation (photos du 28/03/2011)	8
Figu	re : Evo	olution d	les concentrations en méthane au cours du temps aux 2 points de dégazage (mesur	re
Figu	re : Evo	olution d	des concentrations en TP au cours du temps aux 2 points de dégazage (mesure Eco	probe)22
Tal	oleau	X		
Tabl	eau : St	ructure	administrative et personnes en charge de l'exploitation du C.E.T. de Chapois	7
Tabl	eau : C	omposit	ion du biogaz brut- composés majeurs (données BEP et ISSeP)	13
			1 1 0	
Labl	eau : Fl	lux annu	iels totaux	23
		11/1/1	e l'air ambiant – Stations A et B (données BEP Environnement)	

Annexes

Annexe : Autocontrôles de la composition du biogaz et des fumées du moteur à gaz (données exploitant) 7 pages

Annexe : Rapport de prélèvement : Campagne de mesure des émissions surfaciques et des flux au C.E.T. de Happe-Chapois 9 pages

Annexe: Données d'autocontrôle des émissions surfaciques – 3^{ème} trimestre 2012 – Mesures SPAQuE (Source BEP Environnement) 2 pages

Abréviations utilisées dans le texte

BEP Bureau Economique Provincial

BTEX Benzène, toluène, éthylbenzène, xylènes

C.E.T. Centre d'enfouissement technique COV Composés organiques volatils

DIB Déchets banals inertes

DPC Département de la Police et des Contrôles

FID Flame ionization detector (détecteur à ionisation de flamme)

GC-MS Gas chromatography-Mass spectrometry

HCnM Hydrocarbures non méthaniques

MAG Moteur à gaz

Nm³ Mètre cube dans les conditions normales de température et de pression

PID Photoionisation detector (détecteur par photoionisation

TP Total petroleum (hydrocarbures totaux)

INTRODUCTION

Le réseau de contrôle des centres d'enfouissement technique (en abrégé C.E.T.) en Région wallonne a été mis en place en 1998 ; sa gestion a été confiée à l'ISSeP. Douze C.E.T. sont actuellement intégrés au réseau de contrôle : Mont-Saint-Guibert, Hallembaye, Cour-au-Bois, Froidchapelle, Cronfestu, Belderbusch, Monceau-sur-Sambre, Chapois, Tenneville, Habay, Morialmé et Malvoisin.

Chaque C.E.T. fait l'objet de campagnes de contrôle successives dans le temps. La première dresse un état des lieux du site à son introduction dans le réseau, les suivantes montrent l'évolution de la situation environnementale du C.E.T. au cours du temps, notamment en fonction des actions prises et des installations mises en œuvre par l'exploitant.

Le C.E.T. de Chapois est entré dans le réseau en 2004. La campagne de contrôle (2004-2005), et les compléments réalisés en 2006, constituent la première investigation réalisée par notre Institut sur le site (rapport ISSeP 0897/2006).

En janvier 2007, une seconde campagne de contrôle a été initiée, ciblée cette fois sur les eaux et la qualité de l'air (rapport ISSeP 2667/2007).

En 2009, le C.E.T. a fait l'objet d'une troisième campagne de contrôle avec deux axes d'investigation : les eaux et les émissions de biogaz à la surface des zones d'enfouissement. Le volet "eaux" a fait l'objet d'un rapport distinct (rapport 01917/2009) visant notamment à statuer sur la nécessité de poursuivre les autocontrôles accrus, initiés par l'exploitant à la suite des précédentes recommandations de l'Institut. Le volet "Air" a été publié ultérieurement (rapport 02386/2009).

La surveillance s'est à nouveau focalisée sur le volet "eaux" en 2011, lors d'une quatrième campagne sur ce C.E.T. (rapport ISSeP 2048/2012).

En 2012, suite à la réhabilitation provisoire de la phase 2 du C.E.T., l'ISSeP a mené une campagne de mesures des émissions surfaciques afin de statuer sur l'efficacité du capping mis en œuvre (dérogation autorisant l'absence de mise en place d'un géosynthétique drainant). Pour les autres volets de la surveillance, en l'occurrence les émissions du moteur valorisant le biogaz et la qualité de l'air ambiant, l'ISSeP s'est basé sur les résultats d'autocontrôles fournis par l'exploitant. Vu l'arrêt complet de l'activité d'enfouissement sur le site, l'étude des nuisances olfactives n'a pas été jugée pertinente. Les résultats relatifs à chaque volet de la surveillance "Partim Air" sont présentés et interprétés dans le présent rapport. Au préalable et en guise de contexte, les constats tirés lors de chaque dernière campagne menée par l'ISSeP sont rappelés.

L'étude préparatoire, par laquelle débutent généralement les rapports et qui décrit de manière succincte le C.E.T. sous ses divers aspects (renseignements généraux, techniques d'exploitation, installations existantes, historique, ...) n'est pas reprise dans ce rapport. Ces informations sont compilées de manière plus complète sous la forme d'un **dossier technique** publié séparément. Cette partie contextuelle a également été abordée de manière récurrente dans les rapports de campagne précédents. Seuls les éléments nouveaux et/ou particulièrement utiles à la compréhension de la partie interprétative ont été repris dans le présent rapport.

Tous les documents cités plus haut (dossier technique et rapports antérieurs) sont téléchargeables sur le site Internet du réseau de contrôle à l'adresse suivante :

http://environnement.wallonie.be/data/dechets/cet/index.htm

2 ETUDE PRÉPARATOIRE

2.1 Objectifs

Le but de l'étude préparatoire est de récolter un maximum de données techniques, administratives, environnementales et historiques qui permettent d'évaluer la situation du C.E.T. et de définir une stratégie d'échantillonnage et de contrôle optimale.

2.2 Description du site et de ses alentours

2.2.1 Localisation

La localisation du C.E.T. de Chapois est présentée au Plan 1 sur la carte topographique de Belgique au 1:10.000°. Le C.E.T. est situé sur le territoire de la commune de Ciney, dans la localité de Chapois, au lieu-dit "Les Golettes". Il est accessible par la RN 949 Ciney-Rochefort. Dans le système lambertien, le site est inclus approximativement dans le rectangle de coordonnées suivantes :

- $X_{min} = 205237$ et $X_{max} = 206409$
- $Y_{min} = 104391$ et $Y_{max} = 105235$

2.2.2 Situation administrative

La dénomination complète du site est : "Centre d'Enfouissement Technique de Chapois au lieudit Les Golettes". Le BEP (Bureau économique de la province de Namur) en est propriétaire et l'a exploité comme centre d'enfouissement technique de classes 2 et 3. Le Tableau 1 reprend la structure administrative et les responsables de la (post)gestion du site.

Tableau 1 : Structure administrative et personnes en charge de l'exploitation du C.E.T. de Chapois

Exploitant/Propriétaire :	Bureau économique de la Province de Namur – dépt. environnement							
Siège Administratif:	BEP-Environnement (Bureau Economique de la Province de Namur,							
	département environnement)							
	Avenue Sergent Vrithoff, 2							
	5000 Namur							
	Tél: 081/71 71 71 Fax: 081/ 71 71 01							
Responsable:	Mr DEGUELDRE, Directeur Général							
Siège d'exploitation :	C.E.T. de Chapois							
	Route de Rochefort							
	5590 Chapois							
	(Lieudit "Les Golettes")							
Personne ressource :	Mr B. Hanquet, Chef de Service "Traitement industriel et étude de							
	projets" – Département Environnement							

2.2.3 Description des installations actuelles

Les installations qui étaient actives durant la période d'ouverture du C.E.T. ainsi que leur mode d'utilisation, les méthodes d'enfouissement, la nature des déchets enfouis et les procédures de contrôles sont décrits en détail dans le rapport ISSeP 0897/2006 présentant les résultats de la première campagne de contrôle ainsi que dans le dossier technique.

Le 31 décembre 2009, le site a été définitivement fermé. Plus aucun déchet n'a été admis sur le site depuis cette date. Les travaux de réhabilitation se sont déroulés fin 2010-début 2011 conformément au plan d'aménagement du site et sur base d'un cahier des charges visé par le Département des Sols et des Déchets. Une description détaillée des travaux réalisés est disponible dans la fiche "réhabilitation" du dossier technique. La Figure 1 présente deux vues

panoramiques de la zone d'enfouissement récemment réhabilitée (phase 2), depuis le chemin d'accès à la STEP respectivement vers le sud-est et vers le nord.

Figure 1 : Panoramiques du site après sa réhabilitation (photos du 28/03/2011)

Le Plan 2 et le Plan 3 présentent les installations actuelles sous forme d'une orthoimage et d'un plan terrier.

2.2.4 Historique de l'exploitation

Le rapport ISSeP 0897/2006 reprend l'historique administratif de l'exploitation jusqu'en 2006. Depuis lors, les événements suivants se sont succédés :

- 31 décembre 2009 : fermeture définitive du C.E.T. :
- <u>18 mai 2010</u> : approbation du cahier des charges par le Département du Sol et des Déchets (DSD) ;
- <u>17 juin 2010</u> : Arrêté du Gouvernement Wallon approuvant la mise en œuvre de la réhabilitation provisoire de la phase 2 du C.E.T.;
- **Septembre 2010** : début des travaux de réhabilitation ;
- Mars 2011 : fin des travaux de réhabilitation.

2.2.5 Etudes antérieures

Hormis les études mentionnées dans le rapport ISSeP 0897/2006, seuls les rapports d'études de l'ISSeP présentant les résultats des campagnes de prélèvement précédentes, déjà cités en introduction, sont à mentionner.

2.3 Etudes géologique, hydrogéologique et hydrographique

Dans la mesure où la connaissance approfondie des contextes géologique, hydrogéologique et hydrographique au droit du site n'est pas indispensable pour appréhender la surveillance de la qualité de l'air, ce point n'est pas abordé dans le présent document. Cette partie de l'étude préparatoire est largement documentée dans le rapport de la quatrième campagne de contrôle (2011) – Partim Eau (Rapport ISSeP 2048/2012).

2.4 Sensibilité du site

Du temps de son exploitation, le C.E.T. de Chapois présentait déjà une sensibilité qualifiée de faible vis-à-vis de la qualité de l'air, vu son isolement par rapport aux premières habitations. Le

premier rapport de campagne (2004) concluait que, bien que situé dans une zone dégagée à flanc de colline et plus fortement balayée par les vents, l'impact du C.E.T. sur son voisinage direct était relativement réduit. A présent que le C.E.T. est totalement réhabilité et tant que le système d'exploitation du biogaz fonctionne de façon optimale, cette sensibilité est pratiquement réduite à néant.

3 STRATÉGIE GLOBALE D'ÉCHANTILLONNAGE

Le contrôle des effluents gazeux et des nuisances potentielles pour les riverains liées à leur immission dans l'air ambiant comporte généralement quatre volets distincts :

• Volet "émissions des installations de valorisation" :

Cette partie de l'étude est sous-traitée à la cellule Emissions atmosphériques de l'ISSeP. Il s'agit de contrôler les émissions gazeuses produites par les torchères et/ou les générateurs électriques à combustion (moteurs) installés sur le C.E.T., afin de vérifier que ces émissions sont conformes aux législations et aux normes en vigueur.

• Volet "émissions surfaciques" :

Il s'agit de réaliser, selon un maillage plus ou moins régulier, des mesures semiquantitatives des émissions diffuses de biogaz (CH₄, CO₂, hydrocarbures totaux) à travers la couverture définitive ou provisoire des zones réhabilitées et des zones en exploitation. Tous les points de mesure sont géoréférencés grâce à un GPS de terrain de haute précision. L'étude des émissions surfaciques inclut généralement des mesures de concentration et des mesures de flux qui, combinées entre elles via un traitement géostatistique, permettent de visualiser les zones de dégazage préférentiel et d'estimer la quantité totale de biogaz qui s'échappe vers l'atmosphère. Une cartographie des flux peut dès lors être réalisée sur l'ensemble des zones étudiées. Cette stratégie d'échantillonnage est néanmoins adaptable, en

• Volet "nuisances olfactives" :

fonction de la phase d'exploitation du site.

Ccette partie de l'étude est sous-traitée à l'Université de Liège. Depuis plus de dix ans, la stratégie utilisée par l'ULg sur les C.E.T. consiste à réaliser régulièrement des "tours odeurs", c'est-à-dire des mesures de l'odeur dans l'environnement proche du C.E.T. (méthode d'olfactométrie déambulatoire). Ces mesures à l'immission permettent de tracer des zones limites de perception d'odeurs pour chaque journée de mesures. En couplant ces informations journalières aux données de "climat moyen" et à des informations récoltées auprès des riverains, on peut alors calculer des "zones P98", à l'intérieur desquelles, en climat moyen, les odeurs sont perçues au moins durant 2% du temps.Il est également possible, à partir des mesures à l'immission, de déduire un débit d'odeurs moyen à l'émission.

• Volet "qualité de l'air":

Cette partie de l'étude est sous-traitée à la cellule Qualité de l'air de l'ISSeP. L'analyse de la qualité de l'air atmosphérique dans l'environnement proche du C.E.T. est possible grâce à l'installation sur site de laboratoires mobiles durant une période suffisante et à des emplacements judicieusement choisis.

A Chapois, étant donné la cessation des principales activités génératrices de nuisances à l'immission, à savoir les odeurs et les substances polluantes dans l'air, ces deux volets de la surveillance ont été considérés comme non pertinents en 2012. L'Institut a focalisé ses investigations sur les émissions surfaciques au niveau du dôme récemment réhabilité. Quant aux contrôles de la qualité du biogaz et de la conformité des émissions du moteur, ils n'ont pas pu être effectués par l'ISSeP au moment de la campagne, pour des raisons propres à l'Institut. En attendant qu'il soit planifié, l'ISSeP s'est procuré les données d'autocontrôles annuels, effectués par un laboratoire agréé, afin de les interpréter et de les comparer aux valeurs maximales autorisées. L'analyse interprétative de la qualité de l'air s'est également basée sur des résultats d'autocontrôles, préalablement validés par l'ISSeP lors de précédentes campagnes de surveillance.

4 BIOGAZ ET EMISSIONS DES INSTALLATIONS

4.1 Description des installations

Depuis 2005, le C.E.T. de Chapois est équipé d'un module de cogénération, comprenant un moteur à gaz d'une puissance de 781 kW et un système de récupération et de distribution de l'eau chaude, permettant de valoriser le biogaz extrait du massif de déchets. Le réseau de pompage, souterrain, est réparti de façon uniforme sur le C.E.T. et compte actuellement 27 puits de gaz répartis comme suit :

- 12 puits de gaz sur la Phase I et II.1 (pg1 à pg12) déjà réhabilitée au moment où le C.E.T. a été intégré au réseau de surveillance ;
- 15 puits de gaz sur la Phase II.2 (PG1 à PG15).

Sur cette dernière Phase, le nombre de puits initialement prévu s'élevait à 14. Un puits supplémentaire a été implanté au moment de la réhabilitation provisoire.

La Figure 2 localise l'ensemble de ces puits.

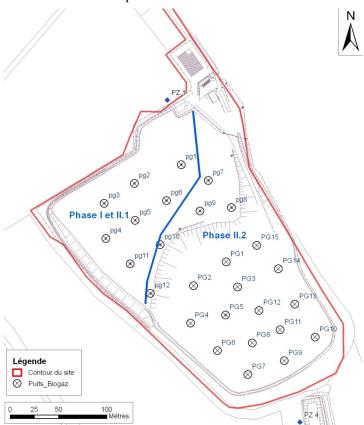


Figure 2: Localisation des puits de gaz sur les Phases I et II du C.E.T.

4.2 Mesures et contrôles

L'autorisation d'exploiter du 12 décembre 2012 et l'article 60 de l'Arrêté du 27 février 2003 (modifié le 07 octobre 2010) fixant les conditions sectorielles pour l'exploitation des C.E.T. précisent les modalités relatives à la caractérisation, l'élimination et la valorisation du biogaz.

Pour le biogaz, elles consistent en :

- Fréquence d'analyse : semestrielle ;
- Lieu de prélèvement : à l'entrée du moteur ;

- Paramètres mesurés :
 - analyses quantitatives : CH₄, CO₂, O₂, N₂, H₂, H₂S, benzène, toluène, xylènes, chlorure de vinyle,
 - analyses qualitatives et semi-quantitatives : composés organiques et dérivés organométalliques, organo-soufrés, organo-azotés, organo-halogénés, organo-chlorés.
 - teneur en soufre, calculée en H₂S, et les composés soufrés, ne peut excéder 50 ppm,

et pour les fumées du moteur :

- Fréquence d'analyse : annuelle ;
- Lieu de prélèvement : à la sortie du moteur ;
- Paramètres mesurés :
 - Analyses quantitatives: CO, O₂, N₂, CO₂ NO_x, SO₂, benzène, toluène, chlorure de vinyle;
 - Analyses qualitatives et semi-quantitatives de tous les organiques détectés.

Les valeurs limites autorisées (VMA) pour les rejets à l'atmosphère du moteur sont fixées par l'arrêté communal du 06 décembre 2004 relatif à l'autorisation de monter et d'exploiter un module de cogénération destiné à valoriser le biogaz. Elles concernent les paramètres habituels pour les C.E.T. (repris dans les conditions sectorielles), à savoir :

- Les NOx, VMA: 500 mg/Nm³ (exprimés en NO₂);
- Le CO, VMA: 650 mg/Nm³;
- Les HCnM, VMA: 150 mg/Nm³ (exprimés en C_{tot} hors CH₄).

Les mesures sont rapportées aux conditions suivantes : pression de 1013 hPa, teneur en O_2 de 5% sur gaz sec.

Les limites d'émission sont respectées lorsque :

- aucune moyenne journalière des concentrations à l'émission ne les dépasse ;
- 97 % des moyennes sur 1/2 heure ne dépassent pas 1,2 fois ces valeurs ;
- aucune moyenne sur 1/2 heure ne dépasse pas le double de ces normes à l'émission.

Lorsque les techniques d'échantillonnage ou d'analyse ne permettent pas de réaliser ce type de mesure, la moyenne arithmétique de trois mesures représentatives ne peut dépasser les normes d'émissions fixées.

4.3 Résultats

Comme déjà précisé ci-dessus, les résultats présentés dans cette section consacrée aux analyses du biogaz prélevé en amont des installations de valorisation et des fumées du moteur sont ceux des autocontrôles. Jusqu'à nouvel ordre, le BEP Environnement a chargé le laboratoire agréé Vinçotte de réaliser ces autocontrôles ; les analyses de COV sont sous-traitées au laboratoire DCMS. L'ISSeP dispose des résultats de décembre 2010 à juin 2012.

4.3.1 Biogaz

Le Tableau 2 reprend les teneurs en composés majeurs mesurés dans le biogaz par DCMS le 06/12/2010, le 14/06 et 12/12/2011 et le 27/06/2012. Le point de contrôle est situé en amont du module de cogénération. A la connaissance de l'ISSeP, le biogaz ne subit pas de traitement sur charbon actif avant sa valorisation, il s'agit donc d'un biogaz brut. Les deux dernières colonnes du tableau présentent, à titre de comparaison, les résultats d'analyses du biogaz effectuées lors de la campagne de l'ISSeP en 2004, de même que les statistiques calculées pour les C.E.T. du

réseau, extraites du "Rapport annuel sur la qualité de l'air autour des C.E.T., deuxième édition : 2010" (Rapport ISSeP 1242/2011).

Tableau 2 : Composition du biogaz brut- composés majeurs (données BEP et ISSeP)

	06/12/10	14/06/11	12/12/11	27/06/12	Moyenne Autocontrôle	Campagne ISSeP 2004	Moyenne réseau (jusque 2010)
CH ₄ moyen (%)	37	53	50	41	45,3	54,5	48
CO ₂ moyen (%)	22	33	30	26	27,8	32,1	35
O ₂ moyen (%)	2,8	0,86	0,75	0,83	1,3	0,4	1,3
N ₂ moyen (%)	38	13,1	19,4	32	25,6	-	-
H ₂ S (mg/Nm ³)	1400	4700	2400	1300	2450	351	146

Valeurs rapportées à 273 K, 1013 hPa sur gaz sec.

Les résultats d'analyses des COV dans le biogaz sont présentés au Tableau 3. Les teneurs individuelles des composés les plus représentatifs et les teneurs totales par famille de substances sont données pour les quatre campagnes d'autocontrôle. La liste complète des paramètres pour chaque échantillon est fournie en Annexe 1. Les résultats de la campagne de l'ISSeP de 2004 et les statistiques du réseau disponibles sont également présentées dans ce tableau, en vis-à-vis des concentrations moyennes d'autocontrôles.

Tableau 3 : Composition du biogaz – COV en µg/Nm³ (données BEP Environnement)

				ISSeP	Moyenne		
	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne	2004	réseau (jsq 2010)
Alcanes							
Butane	8400	14000	12000	9000	10850	-	-
2-Méthylbutane	3700	10000	7200	6300	6800	-	-
Pentane	2500	6000	4900	6000	4850	-	-
2-Méthylpentane	1000	2200	1800	1800	1700	-	-
3-Méthylpentane	610	1300	970	1000	970	-	-
Hexane	480	760	740	760	685	-	-
n-Heptane	2700	6300	4400	4400	4450	-	-
∑ Alcanes C8	3000	6300	4400	4500	4550	-	-
∑ Alcanes C9	4900	15000	8800	8600	9325	-	-
∑ Alcanes C10	16000	41000	29000	28000	28500	-	-
∑ Alcanes C11	7200	23000	15000	15000	15050	-	-
∑ Alcanes	83701	229830	161260	159550	-	28186	32695
Alcènes							
1-Propène3300	3300	9400	8800	9600	7775	-	-
1-Butène	970	3100	1900	2400	2093	-	-
(E) 2-Butène	200	650	480	660	498	-	-
(Z) 2-Butène	140	410	340	470	340	-	-
∑ Alcènes C5	1200	2600	1800	2000	1900	-	-
∑ Alcènes C6	300	680	610	900	623	-	-
∑ Alcènes C7	95	250	170	260	194	-	-
∑ Alcènes C8	43	160	96	110	102	-	-
∑ Alcènes	6248	17250	14196	16400	-	3964	11402
Organochlorés							
Chlorure de vinyle	76	110	74	96	89	-	923
1,1,1-Trichloroéthane	<5	<5	<5	<5	n.d.	-	-

1,2-Dichloroéthane	43	120	59	71	73	-	-				
1,2-Dichloropropane	110	620	230	270	308	-	-				
Trichloroéthylène	110	380	180	200	218	-	-				
Tétrachloroéthylène	70	200	100	120	123	-	-				
∑ Organochlorés	41694	43531	42671	43035	-	1034	4278				
Dérivés aromati	Dérivés aromatiques										
Benzène	1600	9000	4900	5300	5200	1693	2728				
Toluène	8600	33000	19000	17000	19400	23297	-				
Ethylbenzène	5800	18000	13000	13000	12450	8822	-				
Xylènes	9000	31400	20100	19800	20075	21216	-				
BTEX	25000	91400	57000	55100	57125	55028	46138				
∑ Dérivés aromatiques*	57730	189620	131380	120450	1	-	-				
*Somme de tous les dériv	*Somme de tous les dérivés monoaromatiques										

4.3.2 Fumées du moteur

Les Tableau 4 et Tableau 5 présentent les résultats disponibles pour les analyses des fumées du moteur opérationnel à Chapois effectuées par Vinçotte pour les paramètres majeurs (Tableau 4) et par DCMS pour les COV (Tableau 5). L'ensemble de ces résultats sont repris en Annexe 1. Ces tableaux reprennent à nouveau les statistiques du réseau, de même que les normes en vigueur pour ces émissions.

Tableau 4 : Composition des fumées du moteur – composés majeurs (données BEP Environnement)

	14/06/2011	27/06/2012	Moyenne	Moyenne Réseau (jsq 2010)	Normes
O ₂ (% gaz sec)	6,3	6,3	6,3	6,6	-
CO ₂ (% gaz sec)	12	12,1	12,1	12,4	-
NO _x (mg NO ₂ /Nm ³ gaz sec)	405	207	306	405,3	500
CO (mg/Nm³ gaz sec)	673	793	733	662	650
SO ₂ (mg/Nm³ gaz sec)	<23	<23	n.d.	56,4	-
N ₂ (% gaz sec)	81,7	81,5	81,6	-	-

Tableau 5 : Composition des fumées du moteur – COV en μg/Nm³ gaz sec (données BEP Environnement)

	14/06/2011	27/06/2012	Moyenne	Moyenne Réseau (jsq 2010)	Normes*
Benzène	60	31	45,5	61,5	-
Toluène	30	40	35	30,2	-
Chlorure de vinyle	<10	<15	n.d.	0,9	-
Autres COV*	< 500	< 500	n.d.	-	-
*Seule norme existante rela	tive au COV :	HCnM (hvdrod	arbures non m	néthaniques), fi	xée à 150 mg/Nm ³

4.4 Interprétation des résultats

4.4.1 Composition du biogaz

Comme le montre le Tableau 2, la composition volumique ponctuelle présente une certaine variabilité au cours du temps, qui se marque pour tous les paramètres analysés. Pour le méthane, une valeur particulièrement faible est enregistrée en décembre 2010, en faveur d'une concentration plus importante de diazote. L'augmentation de la proportion d'azote -et dans une

moindre mesure de celle d'oxygène- peut trouver son origine dans le pompage d'air conjointement au biogaz (problème d'étanchéité au niveau de certains puits, pompage plus intensif au moment de l'échantillonnage) ou encore dans une modification des conditions d'extraction (connexion/déconnexion de certains puits, ...).

Comparativement à la campagne de 2004, la teneur en méthane dans le biogaz présente une tendance globale à la baisse, ce qui peut se justifier par l'interdiction depuis 2010 de mise en C.E.T. de la fraction organique des déchets. A l'inverse, lors des dernières campagnes d'autocontrôles, des concentrations significativement plus élevées ont été enregistrées pour le sulfure d'hydrogène (facteurs 4 à 13). Etant donné que le site n'est équipé d'un moteur que depuis 2005, les résultats de la campagne ISSeP de 2004 concernent un biogaz brut, envoyé sans traitement préliminaire vers la torchère. Les teneurs plus importantes relevées entre 2010 et 2012 témoignent vraisemblablement d'une évolution du processus de biodégradation des déchets, principalement due à une modification de la nature des matières enfouies dans le C.E.T. En tout état de cause, si un système de prétraitement du biogaz est présent sur le site, information que l'ISSeP n'a pas pu confirmer, son fonctionnement est loin d'être optimal, que ce soit pour l'abattement du sulfure d'hydrogène, ou plus globalement des COV (voir ci-dessous).

Par rapport aux statistiques établies à l'échelle du réseau de contrôle, les concentrations moyennes en éléments majeurs, calculées sur base des valeurs d'autocontrôles de décembre 2010 à juin 2012, sont sensiblement inférieures. Néanmoins, le rapport [CH₄:CO₂], qui reste relativement constant autour d'une valeur de 1,6 à Chapois, est plus élevé que la moyenne du réseau ([CH₄:CO₂] = 1,37). La qualité du biogaz produit à Chapois reste satisfaisante pour une valorisation dans le module de cogénération.

Globalement, les teneurs moyennes en COV dans le biogaz valorisé à Chapois sont significativement plus élevées actuellement qu'en 2004 (campagne ISSeP), et également plus élevées que la moyenne du réseau. Le chlorure de vinyle fait figure d'exception : toutes les teneurs fournies par l'exploitant sont de l'ordre de 10 fois inférieures à celle, moyenne, du réseau.

4.4.2 Composition des fumées du moteur

Lors de la campagne de 2004, l'ISSeP n'a pu contrôler les émissions du moteur, celui-ci n'étant pas encore installé à ce moment. Les analyses avaient porté sur les fumées de combustion de la torchère. La conformité des fumées du moteur s'est évaluée sur base des données récentes d'autocontrôle à disposition de l'ISSeP (voir Tableau 4et Tableau 5). Il en ressort que les fumées du moteur sont conformes aux normes fixées pour les oxydes d'azote et les hydrocarbures non méthaniques (ici assimilés à la somme des concentrations en COV) mais ne sont **pas conformes** à la norme **pour le CO**. Ces dépassements de norme pour le CO sont loin d'être spécifiques au site de Chapois, de nombreux C.E.T. du réseau étant confrontés au même problème. Même la moyenne du réseau du contrôle pour ce paramètre est légèrement supérieure à la valeur de référence (650 mg/Nm³) historiquement imposée dans les conditions particulières relatives à l'exploitation des installations de valorisation du biogaz sur des C.E.T.

Concernant les COV (Tableau 5), les teneurs en benzène, toluène et chlorure de vinyle n'ont pas particulièrement attiré l'attention de l'ISSeP ; elles sont du même ordre de grandeur, voire inférieures aux statistiques du réseau.

Le moteur installé à Chapois n'ayant jamais fait l'objet d'un contrôle spécifique de l'ISSeP, une campagne d'analyse y est prévue dans le courant de 2013.

5 MESURE DES EMISSIONS SURFACIQUES ET ESTIMATION DES FLUX

5.1 Contexte

La campagne de mesure des émissions surfaciques du C.E.T. de Happe-Chapois a été réalisée dès lors que le C.E.T. était complètement réhabilité, conformément aux prescriptions de l'AGW du 17 juin 2010 relatif à la mise en œuvre de la réhabilitation provisoire de la phase 2 du C.E.T.

Cet arrêté précise qu'''En fin de travaux, l'ISSeP réalise une campagne de contrôle afin de vérifier que la réhabilitation provisoire du site limite effectivement les émissions surfaciques de biogaz".

La campagne de l'ISSeP s'est déroulée à la même période que le contrôle périodique des concentrations surfaciques en méthane effectué par SPAQuE pour le compte de l'exploitant.

Ce suivi, en principe semestriel, est l'une des conditions imposées à l'exploitant pour l'octroi de la dérogation aux conditions sectorielles le dispensant de mettre en place le géosynthétique de drainage dans le capping provisoire.

L'ISSeP a déjà réalisé 4 campagnes d'évaluation des émissions surfaciques sur le C.E.T. de Happe-Chapois, en 2004, 2005, 2006 et 2009. Depuis lors la méthodologie globale d'investigation sur le terrain (procédure d'échantillonnage et matériel de mesure) et de traitement des données a évolué de façon significative. Toutefois, étant donné les résultats obtenus lors de la phase d'investigation, il a été décidé de s'écarter de la méthodologie classique de traitement géostatistique des données. En effet, étant donné que 2 points de mesures seulement présentaient un dégazage mesurable, l'ISSeP a décider de traiter les données de façon simplifiée afin de pouvoir allouer le budget initialement prévu pour la sous-traitance du traitement géostatistique à un développement de la méthodologie d'investigation (rapport ISSeP à paraître).

Cette section présente, dans les grandes lignes, les différentes phases de l'étude appliquée au C.E.T. de Happe-Chapois lors de cette campagne, à savoir :

- La phase préparatoire (Phase I).
- La stratégie d'échantillonnage (Phase II),
- Les mesures de concentrations et de flux et la cartographie des flux (Phase III).

Le rapport de prélèvement, reprenant les informations et données collectées lors des journées de terrain (rapport ISSeP 2962/2012) est fourni en Annexe 2.

5.2 Phase I : Phase préparatoire

Ce chapitre présente les résultats des campagnes précédentes (texte repris de conclusions des différents rapports de campagnes) et les constats tirés lors de la visite préliminaire de 2012.

5.2.1 Campagne 2004

Les mesures ont été réalisées selon un maillage de 20m de côté ; elles ont permis de dresser un premier état des lieux du site de Happe-Chapois. Les constatations suivantes ont été mises en évidence :

- La partie réhabilitée est recouverte d'un capping définitif dont l'efficacité est très bonne : pas de dégazage constaté sauf très localement le long de la bordure nord-ouest. A cet endroit, on constate quelques points où la concentration en méthane dans l'air est supérieure à 1.000 ppm.
- Le talus séparant la zone réhabilitée et la zone en exploitation montre également une petite zone de dégazage sur son flanc est (quelques mesures supérieures à 1.000 ppm).

• Quant à la zone en exploitation, elle faisait l'objet d'un déversement des déchets sur la totalité de la superficie. Cette zone présente un dégazage non nul mais diffus et de faible intensité. Des fuites de gaz un peu plus intenses s'observent localement en pourtour du site.

5.2.2 Campagne 2005

La seconde campagne confirme la bonne étanchéité de la zone réhabilitée à l'exception de la bordure nord-ouest, qui montre à nouveau une fuite de gaz locale (concentration en méthane supérieure à 1.000 ppm).

Pour la partie exploitée, la prise de mesures plus dense (mesures tous les 10 m) a permis d'affiner les zones où l'on constate du dégazage. La limite entre la zone exploitée et la zone réhabilitée se marque par un talus au pied duquel se trouve la zone de déversement des déchets lors de nos mesures. A cet endroit, le réseau de pompage des gaz est peu développé ce qui induit des fuites de gaz au travers de la masse de déchets plus importantes.

Le dégazage sur l'est du talus séparant les zones est confirmé.

Deux zones de dégazage apparaissent au sud-est du site. Elles sont localisées sur la partie du C.E.T. dont le déversement de déchets venait juste d'être terminé et sur lesquels l'exploitant commençait à étaler une couche de compost. Quant à la partie sud-ouest du site, la couverture provisoire montre une bonne efficacité.

5.2.3 Campagne 2006

Pour la zone réhabilitée, la campagne de 2006 apporte les informations suivantes :

- L'étanchéité de la couverture est toujours bonne.
- L'extrémité nord-ouest montre toujours un dégazage mais son intensité a sensiblement diminué. En discutant avec l'exploitant, il s'avère que le pompage au niveau des puits de gaz proches de cette zone a été intensifié, ce qui a pu contribuer à diminuer les fuites de gaz.
- Sur le flanc est, une zone de dégazage apparaît pour la première fois. Le décapage temporaire lors de la campagne de mesure de la couverture pourrait expliquer les résultats observés.

La **partie en exploitation** peut être scindée en deux zones du point de vue des mesures de méthane réalisées en 2006 :

- La zone où les déchets ont été déversés durant la campagne ISSeP ou juste avant. Elle est localisée au pied du talus reliant la partie réhabilitée de celle en exploitation. Sur cette partie, deux puits de gaz supplémentaires venaient d'être reliés au réseau de pompage des gaz. Certaines mesures sur la zone de déversement en cours lors de notre campagne, n'ont pas été exécutées pour des raisons de sécurité.
- La zone dont l'exploitation est plus ancienne et qui a été recouverte d'une bonne épaisseur de compost durant son inactivité. Elle constitue la zone sud du C.E.T. Sur cette partie exploitée actuellement, on peut constater :
 - Les zones récemment exploitées ou en exploitation le jour des mesures, montrent un dégazage important : ces secteurs n'étaient pas recouverts de compost du fait de l'activité de déversement en cours. Les puits de gaz supplémentaires étaient en phase de réglage et le pompage n'était pas totalement efficient. De plus l'imprécision de l'interpolation au niveau de la zone de déversement est importante puisqu'aucune mesure n'a été réalisée sur ce secteur.
 - La partie sud-ouest du C.E.T. n'a plus été exploitée depuis plus d'un an : une couche de compost plus épaisse recouvre cette zone et la végétation a pu s'y développer. Les puits de gaz implantés sur cette partie sont actifs. On n'y observe

que peu de dégazage sauf quelques spots, supérieurs à 1000 ppm en bordure de talus

- Quant à la partie sud-est, son exploitation remonte à quelques mois également. On y distingue une large zone de dégazage de forte intensité. Cette partie reçoit notamment les tas de compost et d'inertes nécessaires aux travaux de recouvrement des déchets. Des aménagements de piste pour une prochaine phase d'exploitation sont en cours de réalisation. C'est à cet endroit que l'on constate des émissions surfaciques importantes.
- Le flanc est du site, en bordure de la clôture, présente un certain dégazage, mis en évidence par l'absence de végétation.

5.2.4 Campagne de 2009

Les mesures d'émissions surfaciques réalisées en juin 2009 sur le C.E.T. de Chapois montrent que, globalement par rapport à 2006, il y a une amélioration sensible de la situation.

Etant donné la localisation des émissions surfaciques en périphérie de la zone d'exploitation, l'ISSeP recommande à l'exploitant de prendre des actions correctrices telle que, par exemple, le rechargement des zones mises en évidence à l'aide de compost préférentiellement. La zone de faiblesse située sur la zone réhabilitée (où la bâche est apparente) devrait également faire l'objet d'une intervention sur la couverture.

La campagne réalisée a également permis de réaliser des tests pour mesurer des flux de méthane et de CO_2 en différents endroits du C.E.T. Ces points de mesures sélectionnés l'ont été en fonction des mesures FID mesurées les jours précédents. Il s'agit donc de points « worst-case » qui nous ont assuré de bonnes conditions de mesures et de tests.

Etant donné que ces mesures ponctuelles de flux n'avaient pas pour objectif de déterminer un flux global de méthane et de CO_2 , celles-ci n'ont été données que de manière ponctuelle et en guise d'introduction aux mesures de flux que l'ISSeP sera à même de réaliser prochainement.

5.2.5 Données collectées lors de la campagne d'août 2012

Aux informations historiques, s'ajoutent celles récoltées lors de la campagne 2012 :

- Toute activité de mise en décharge a définitivement cessé.
- La phase 2, au sud du C.E.T., a fait l'objet d'une réhabilitation, conformément aux prescriptions de l'arrêté de réhabilitation délivré à BEP Environnement (AGW du 17/06/2010). Une couche de terre recouvre donc le dôme, partiellement enherbé.
- La végétation est plus développée au droit de la zone anciennement réhabilitée, phase 1 au nord, que dans la zone sud.
- Un réseau de puits de gaz dense est implanté sur le site et est relié à un moteur en activité lors de la campagne 2012.
- Une jauge Owen de mesure de poussières sédimentables est présente sur le dôme.
- Un dispositif d'analyse de la qualité de l'air ambiant est présent au droit du local technique.

5.3 Phase II : Stratégie d'échantillonnage

La stratégie d'échantillonnage est détaillée dans le rapport de prélèvement en Annexe 2.

En résumé, 35 points de mesures de flux ont été répartis aléatoirement sur l'ensemble du dôme réhabilité. Chaque point fait l'objet d'une mesure avec l'Inspectra laser et l'Ecoprobe infrarouge tout deux reliés en parallèle à la chambre de flux INERIS. Aucune mesure de flux simplifiée à l'aide de la cloche Odotech n'a été réalisée lors de cette campagne.

Chaque puits de gaz fait également l'objet d'une mesure selon la même méthodologie.

Une description des appareils de mesure utilisés lors de cette campagne est fournie dans la fiche technique "Air-Méthode" disponible sur le site internet du réseau de contrôle.

5.4 Phase III : Mesures et cartographie des flux

5.4.1 Mesures

Les mesures sur site ont été réalisées les 22 et 23 août 2012. Une journée complémentaire a été organisée le 29 août 2012 afin d'augmenter le nombre de points de mesures dans les zones plus émissives mises en évidence lors de la campagne.

Pour des raisons techniques, la mesure des données météorologiques n'a pu être effectuée lors de cette campagne. Les 3 journées de mesures étaient marquées par un temps chaud, sec et très stable.

Au total 83 points (puits de gaz compris) ont fait l'objet d'une mesure de flux (Inspectra + Ecoprobe). La synthèse des résultats de mesures de flux surfacique est présentée au Tableau 6. Leur emplacement figure sur le Plan 4.

Tableau 6 : synthèses des résultats de mesures de flux surfacique

		oprobe (ppm	n)	Inspectra (ppm)			
Point	CH4max	CO2 max	TP max	CH4max	X (m)	Y (m)	Z(m)
x1y1	0	625,0416	0	1,4	205591,116	104950,149	304,494
x1y2	0	523,4393	0	1,8	205541,305	104932,122	303,462
x1y3	0	568,0398	0	1,8	205509,333	104911,457	302,25
x1y4	0	566,4167	0	1,8	205511,553	104873,657	299,951
x1y5	0	470,1231	0	1,9	205541,829	104893,146	302,771
x1y6	0	507,2419	0	1,7	205575,164	104912,286	304,752
x1y7	0	506,3674	0	1,2	205623,901	104934,717	301,216
x1y8	0	511,7004	0	2,0	205644,428	104907,04	297,719
x1y9	0	538,9456	0	1,4	205612,29	104902,229	302,396
x1y10	0	469,5417	0	1,4	205570,472	104866,943	301,376
x1y11	0	479,5296	0	1,5	205537,53	104847,135	297,819
x1y12	0	758,5078	0	1,7	205560,115	104817,793	294,202
x1y13	0	440,6945	0	1,7	205603,986	104827,152	296,894
x1y14	0	456,377	0	1,5	205637,893	104851,619	299,276
x1y15	0	443,6762	0	1,7	205669,525	104868,851	296,085
x1y16	0	529,8276	0	1,6	205693,149	104781,751	290,937
x1y17	0	430,4181	0	1,8	205648,636	104824,719	297,512
x1y18	0	431,642	0	1,9	205635,004	104795,006	294,406
x1y19	0	429,0488	0	1,6	205601,483	104787,434	290,628
x1y20	0	459,4362	0	2,8	205627,702	104759,104	287,371
x1y21	454	1124,2072	497	538,9	205659,829	104735,435	285,4
x1y22	0	523,0725	0	3,4	205697,426	104750,49	284,527
x1y23	0	502,8545	0	2,3	205672,378	104799,661	294,673
x1y24	0	481,7579	0	2,2	205664,735	104766,652	290,937
x1y25	0	492,9548	0	2,5	205605,901	105004,807	300,192
x1y26	0	510,4446	0	1,9	205604,047	104977,528	302,172
x1y27	0	471,7856	0	2,1	205633,213	104965,335	299,916
x1y28	0	460,5523	0	2,2	205573,479	104965,624	303,452
x1y29	0	457,6653	0	2,2	205536,014	104950,241	302,735
x1y30	0	443,3125	0	1,9	205536,931	104946,23	302,946
x1y31	0	421,8316	0	1,8	205565,51	104919,92	304,67

1 1		1			7	İ	i i
x1y32	0	455,6526	0	1,9	205481,041	104909,002	302,636
x1y33	0	414,1961	0	2,4	205464,226	104908,277	303,038
x1y34	0	445,8737	0	2,6	205483,438	104876,916	300,172
x1y35	0	468,0569	0	2,6	205530,729	104833,159	296,292
x2y01	0	535,6269	0	1,3	205596,744	105003,232	301,114
x2y02	0	510,2159	0	1,1	205592,281	104999,474	301,5
x2y03	0	501,7831	0	1,4	205568,214	105001,065	300,892
x2y04	0	447,3605	0	1,7	205582,031	104949,379	304,643
x2y05	0	461,6547	0	1,8	205570,087	104843,028	297,397
x2y06	0	430,7124	0	2,5	205586,351	104813,268	293,959
x2y07	0	460,5155	0	2,8	205564,791	104789,95	288,508
x2y08	0	420,352	0	2,3	205580,551	104789,034	288,738
x2y09	0	836,2062	0	30,1	205576,107	104777,345	286,166
x2y10	0	734,9752	0	4,6	205568,978	104781,754	286,455
x2y11	0	465,8966	0	1,9	205613,611	104741,499	281,741
x2y12	0	471,1619	0	6,3	205666,726	104740,269	286,327
x2y13	0	790,5488	0	4,0	205663,748	104731,454	284,065
x2y14	0	427,4821	0	2,5	205649,444	104728,392	282,917
x2y15	0	420,6276	0	1,9	205659,584	104791,018	294,514
x2y16	0	420,9164	0	2,7	205657,851	104818,303	296,61
x2y17	724	874,6373	517	356,9	205661,919	104820,115	296,522
x2y18	0	436,3092	0	1,8	205629,827	104851,148	299,645
x2y19	0	573,2115	0	2,6	205641,795	104895,279	297,81
x2y20	0	448,1568	0	5,1	205624,469	104902,71	300,813
x2y21	0	472,2631	0	4,6	205668,842	104910,457	293,975
x2y22	0	426,7023	0	1,8	205685,925	104882,035	293,051
x2y23	0	784,1962	0	14,0	205697,616	104866,571	289,601
x2y24	0	443,8373	0	2,1	205693,194	104853,983	291,801
x2y25	0	414,818	0	1,6	205693,825	104827,958	292,981
x2y26	0	477,9552	0	2,5	205717,497	104806,874	287,637
x2y27	0	512,6854	0	2,4	205727,309	104790,07	286,109
x2y28	0	469,0305	0	2,0	205734,376	104786,111	284,237
x2y29	0	432,7874	0	2,2	205724,427		283,59
x2y30	0	549,2299	39	207,3	205661,568	104817,391	296,409
x2y31	0	596,0044	0	4,9	205666,884	104820,613	296,23
x2y32	0	400,0637	0	2,4	205659,26	104828,181	297,023
x3y01	0	573,0724	0	1,7	205643,232	104958,781	298,472
x3y02	0	523,681	0	1,8	205707,43	104848,835	287,588
x3y03	0	679,9403	0	2,3	205713,429	104831,685	286,543
x3y04	0	529,6012	0	2,2	205721,479	104820,209	285,311
x3y05	117	916,9579	7	3,0	205708,567	104743,751	281,359
x3y06	0	494,4496	0	1,9	205688,017	104732,03	281,9
x3y07	0	938,1005	0	6,3	205678,303	104729,488	282,066
x3y08	0	508,2963	7	2,4	205667,025	104725,07	281,903
x3y09	0	480,3167	0	1,6	205654,528	104720,687	281,399
x3y10	0	642,3044	0	1,5	205624,88	104739,776	282,069
x3y11	0	531,7755	0	2,2	205600,103	104766,595	285,463
x3y12	0	442,44	0	2,1	205587,948	104777,828	286,904
x3y13	0	415,2207	0	2,2	205574,379	104797,671	290,275
x3y14	0	411,115	0	2,5	205570,232	104812,315	293,04

x3y15	0	449,5131	17	2,7	205649,433	104917,112	297,366
x3y16	80	407,2899	3	2,1	205647,394	104923,717	298,099

Parmi ces points, 2 seulement présentent un dégazage significatif : x1y21 et x2y17, mis en évidence en gras dans le Tableau 6. Les points x2y9, x2y30, x3y5 e x3y16 présentent également des valeurs non nulles mais qui diffèrent d'un appareillage à l'autre. Vu ce constat et étant donné que les flux associés à ces points sont tous très faibles, ils ont été jugés moins fiables et n'ont pas été pris en considération pour l'évaluation du flux total du C.E.T.

Il faut également préciser que la réponse de l'Ecoprobe perd énormément de précision si la concentration en méthane est inférieure à 250 ppm.

5.4.2 Cartographie des flux

L'implantation des points de mesure de flux réalisés par l'ISSeP est présentée au Plan 4. A titre indicatif, l'implantation des points de mesure de concentration réalisées par SPAQuE pour le compte de l'exploitant (autocontrôle du 3^{ème} trimestre, le 04 septembre 2012) ainsi que les concentrations mesurées sont présentés au Plan 5 ; les données originales sont également reprises à l'Annexe 3. On remarque sur le Plan 5 relatif aux mesures SPAQuE que seuls 2 points dépassent la concentration de fond en méthane (0-3 ppm). Ces données SPAQuE n'ont toutefois pas été exploitées pour l'évaluation des flux surfaciques dès lors qu'elles correspondent à des mesures de **concentrations** (mesures FID) et non à des flux. Elles permettent néanmoins de corroborer les observations de très faible dégazage faites par l'ISSeP.

En considérant que seuls les points x1y21 et x2y17 sont le siège de fuites de biogaz, des surfaces émissives maximales ont été établies, délimitées par des mesures de flux nuls dans un rayon de quelques mètres autour de chaque point émissif considéré (x1y21 et x2y17). Ces zones sont représentées par des polygones jaunes sur le Plan 6 (zone 1 et zone 2). Leurs superficies totales sont renseignées dans le Tableau 7

Tableau 7 : Superficie des zones émissives autour des deux sièges de dégazage

	Zone 1	Zone 2
Points de mesure associés	x1y21	x2y17
Superficie des zones	60 m²	25 m²

Dans une démarche sécuritaire, la superficie des zones émissives établie par cette méthode a été volontairement surévaluée et ce, malgré que les données de concentration mesurées par SPAQuE, avec une densité de prélèvement plus élevée que celle de l'ISSeP, indiquent un dégazage nul sur quasiment l'ensemble du dôme.

5.4.3 Calcul des flux totaux

Pour les 2 points qui présentent un dégazage, des flux ont été calculés conformément à la méthodologie de l'INERIS¹. Les courbes d'évolution de la concentration en méthane et TP (hydrocarbures totaux) mesurés à chacun des points à l'aide de l'Ecoprobe sont présentées aux

Figure 3 et Figure 4. Sur ces graphiques figurent également les régressions linéaires qui ont permis de calculer les flux selon la méthode INERIS. Lors de cette campagne, les données collectées à l'aide de l'Inspectra ont uniquement été utilisées à des fins de validation des données Ecoprobe. Une comparaison détaillée des données collectées par les deux appareils et de l'usage qu'il est possible d'en faire fera l'objet d'un rapport ISSeP spécifique à paraître prochainement. Dans l'attente de ce rapport, les flux ont été évalués sur base des résultats engrangés avec l'Ecoprobe uniquement.

¹ D'Or D. (Ephesia Consult), Garcia M. (Kidova) (2009), "Rapport de la partie II : Détermination d'un protocole d'échantillonnage et d'une méthodologie d'estimation et de cartographie des flux de biogaz et application sur le C.E.T. de Mont-Saint-Guibert. Rapport ISSeP 2009002.

Figure 3 : Evolution des concentrations en méthane au cours du temps aux 2 points de dégazage (mesure Ecoprobe)

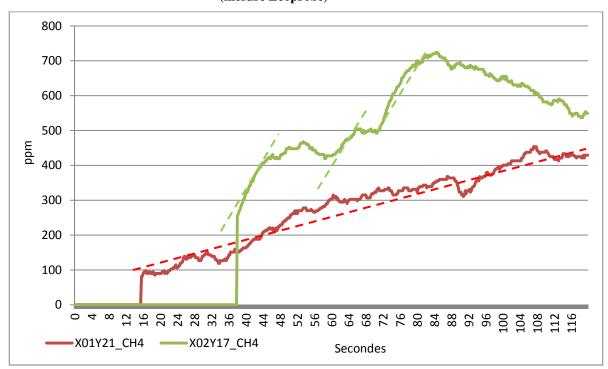
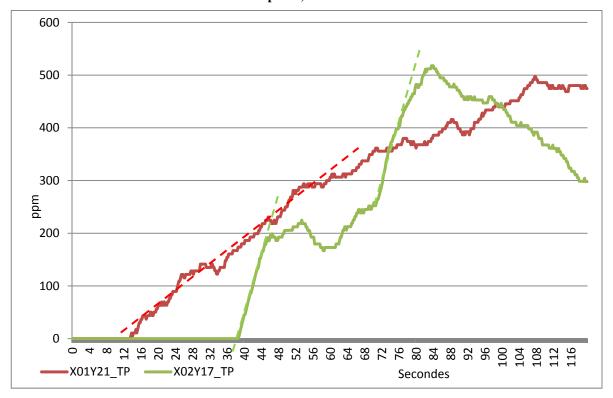



Figure 4 : Evolution des concentrations en TP au cours du temps aux 2 points de dégazage (mesure Ecoprobe)

Les flux locaux par unité de surface calculés au droit de chacun des points pour le méthane et les TP sont présentés au Tableau 8.

Tableau 8 : Flux calculés pour les 2 points de dégazement

	Méthane (ml/min/m²)	TP (ml/min/m ²)
x01y21	29,5	38,72
x02y17	92,71	221,54

Les flux annuels ont été calculés en appliquant les flux instantanés présentés ci-dessus à la superficie des zones émissives pour une durée d'un an. Les résultats sont présentés au Tableau 9.

Tableau 9: Flux annuels totaux

			CH ₄			TP		
		Superficie des zones émissives	Flux instantanés	Flux par zone	Flux annuel	Flux instantanés	Flux par zone	Flux annuel
		m²	(ml/min/m²)	ml/min	m³/an	(ml/min/m²)	ml/min	m³/an
x01y21	Zone 1	60	29,50	1770	930	38,72	2323	1221
x02y17	Zone 2	25	92,71	2318	1218	221,54	5539	2911

Total: 2149 4132

Un total de 2150 m³ de méthane et de 4130 m³ de TP ("total petroleum" ou hydrocarbures totaux) est donc émis annuellement au droit des deux zones recensées comme émissives sur la surface du C.E.T. de Chapois. Ces valeurs sont le résultat d'une estimation *worst case* en raison des options sécuritaires qui ont été choisies pour établir ces flux.

A titre d'information, les valeurs de flux ont été comparées aux **valeurs guides** de l'agence de l'environnement britannique UK-EA.

Les seuils de flux sont alors fixés comme suit :

- Zone réhabilitée définitivement : 0,001 mg CH₄/m²/s, soit 0,0014 ml/m²/s,
- Zone réhabilitée provisoirement : 0,1 mg CH₄/m²/s, soit 0,14 ml/m²/s.

Si on applique le flux mesuré dans les 2 zones émissives à l'ensemble du dôme (50000 m² environ), on obtient un flux surfacique de <u>0,00136</u> ml/m²/s soit une valeur inférieure aux valeurs guides considérées pour un C.E.T. réhabilité définitivement.

6 QUALITÉ DE L'AIR

6.1 Résultats de la campagne ISSeP de 2007

La deuxième et dernière campagne d'évaluation de la qualité de l'air ambiant par l'ISSeP aux alentours du C.E.T. de Chapois, alors encore exploité, s'est déroulée de février à avril 2007. Les deux laboratoires mobiles de l'ISSeP étaient déposés à l'entrée du site (RMCP01) et à la ferme de Happe, le long de la Grand-route Ciney-Rochefort, à moins de 500 mètres au nord-est du site (RMCP03). A cette station, des apports en méthane et sulfure d'hydrogène étaient identifiés en provenance du C.E.T. Pour le H₂S, d'autres sources étaient également mises en évidence dans les environs de la ferme (équarrissoir, exploitation porcine). Au niveau de l'entrée du site, pour les paramètres les plus problématiques d'un point de vue sanitaire, la qualité de l'air mesurée n'était pas impactée par l'activité sur le C.E.T. Les détails de cette campagne sont repris dans le rapport de campagne 996/2007.

En 2012, dès lors que le C.E.T. est complètement réhabilité, cette surveillance ne s'est plus justifiée.

6.2 Autocontrôles de la qualité de l'air ambiant

En matière de surveillance de la qualité de l'air imposée par l'autorisation d'exploiter du 19 décembre 2002, l'exploitant est tenu de mesurer en deux points sur le site :

- en continu : le méthane ;
- en discontinu (fréquence non précisée) : le limonène, le p-cymène, le benzène, le toluène, l'éthylbenzène et les xylènes.

Le site est équipé d'une station météorologique comportant, une girouette, un anémomètre, un thermomètre de l'air, un pluviomètre, un baromètre et un hygromètre.

Lors de la campagne de 2012, l'ISSeP a constaté que l'analyseur en continu du méthane installé dans le local technique situé à l'entrée du site était toujours en place et semblait opérationnel. L'Institut n'a toutefois pas pu se procurer les données de monitoring y collectées.

Concernant les analyses des COV, la fréquence d'analyse est annuelle, si les données fournies par l'exploitant sont complètes et mises à jour. Dans le cadre de cette surveillance périodique, l'exploitant fait réaliser des prélèvements d'air ambiant en deux points d'échantillonnage sur le site (station A et station B), par adsorption sur tubes à charbon actif pendant 24h et analyses par GC-MS après désorption thermique. Les rapports d'analyses ne fournissent néanmoins aucune information quant à la localisation de ces points d'échantillonnage sur le C.E.T.

Le Tableau 10 présente les résultats d'analyses annuelles de la qualité de l'air ambiant, effectuées selon la norme EN13649.

Tableau 10 : Qualité de l'air ambiant – Stations A et B (données BEP Environnement)

	14/06/2011*		27/06/2012			
	Station A	Station B	Station A	Station B		
Limonène (µg/Nm³, gaz sec)	<50	<20	<10	<10		
p-Cymène (μg/Nm³, gaz sec)	<50	<20	<15	<15		
Benzène (µg/Nm³, gaz sec)	<2	<1	<1	<1		
Ethylbenzène (μg/Nm³, gaz sec)	<2	<1	<1	<1		
Toluène (μg/Nm³, gaz sec)	<2	<2	<2	<2		
m,p-Xylène (μg/Nm³, gaz sec)	<2	<1	<1	<1		
o-Xylène (μg/Nm³, gaz sec)	<2	<1	<1	<1		
*Durée de prélèvement non respectée (Station A : 7h, Station B:22h).						

Etant donné le manque d'autonomie des pompes de prélèvement (et/ou en raison de problèmes de raccordement électrique), les prélèvements pour les mesures d'ambiance lors de la campagne de juin 2011 n'ont pas pu être réalisées sur des périodes de 24 heures, ainsi que le préconise la norme EN13649.

Comme en témoigne le Tableau 10, aucun des COV analysés n'est détecté dans les conditions appliquées lors des prélèvements. Afin de s'assurer de l'absence effective de chacun de ces composés dans l'air ambiant, des prélèvements sur des durées plus importantes (en des points d'accès à un raccordement électrique) ou à des débits plus importants pourraient être prévus. Néanmoins, au vu des résultats rassurants enregistrés en 2004 (alors que le C.E.T. était en exploitation), de l'état de réhabilitation du C.E.T. et de l'absence de riverains à proximité, la réalisation d'un tel complément d'étude n'est pas justifiée.

Dans l'état actuel du C.E.T., le risque sanitaire lié à la qualité de l'air ambiant peut être écarté.

7 CONCLUSIONS

Le Centre d'Enfouissement Technique de Happe-Chapois exploité par le BEP Environnement a fait l'objet d'une campagne de contrôle par l'ISSeP en 2012 ciblée sur les émissions surfaciques de biogaz du site récemment réhabilité conformément à l'AGW du 17 juin 2010. Le rapport de campagne y relatif reprend également les résultats d'autocontrôles relatifs :

- à la composition du biogaz ;
- aux émissions du module de cogénération valorisant le biogaz (moteur) ;
- à la qualité de l'air ambiant.

L'ensemble des résultats collectés par l'ISSeP et fournis par l'exploitant a été interprété afin de fournir une vision précise de la situation environnementale du site après sa réhabilitation et de dégager les principales recommandations de suivi pour le futur.

Le présent rapport traite uniquement de la problématique air ("Partim Air"). La problématique eau ("Partim Eau"), étudiée en 2011, a fait l'objet d'un rapport publié en août 2012 (rapport 2048/2012).

Suite aux investigations de l'ISSeP en 2012, les conclusions suivantes ont été tirées pour la partie relative à la surveillance de l'Air.

7.1 Biogaz et émissions des moteurs

Bien que la teneur en méthane présente une tendance globale à la baisse ces dernières années, le biogaz produit à Chapois est de qualité suffisante pour être valorisé dans le module de cogénération installé sur le site depuis 2005. Comparativement aux valeurs habituellement rencontrées sur les autres C.E.T. du réseau, les concentrations en H_2S et COV sont particulièrement élevées, en raison probablement de l'absence de traitement du gaz avant sa valorisation.

Sur base des résultats d'autocontrôles disponibles depuis 2010 (soit sur deux campagnes d'analyses effectuées par Vinçotte Environnement), les émissions du moteur présentent des dépassements de la valeur normative pour le CO. Cette non-conformité est toutefois récurrente sur les C.E.T. du réseau équipés d'installations de valorisation de ce type.

7.2 Emissions surfaciques

La mesure des <u>émissions surfaciques de biogaz</u> au travers des couvertures provisoires ou définitives ont été menées sur le C.E.T. de Happe-Chapois en août 2012.

A titre d'information, les valeurs de flux ont été comparées aux **valeurs guides** de l'agence de l'environnement britannique UK-EA.

Les seuils de flux sont alors fixés comme suit :

- Zone réhabilitée définitivement : 0,001 mg CH₄/m²/s, soit 0,0014 ml/m²/s,
- Zone réhabilitée provisoirement : 0,1 mg CH₄/m²/s, soit <u>0,14 ml/m²/s</u>.

Malgré une approximation *worst case* qui surévalue les émissions estimées, une valeur de 0,0013 ml/m²/s a été calculée pour le site dans son ensemble.

Les émissions surfaciques du C.E.T. de Happe-Chapois peuvent donc être qualifiées de très faibles.

7.3 Qualité de l'air

La qualité de l'air ambiant sur le C.E.T. de Chapois ne pose plus aucun problème environnemental et sanitaire, comme en témoigne l'absence de détection de composés organiques volatils lors des dernières campagnes d'autocontrôles.

8 RECOMMANDATIONS ET PERSPECTIVES

En matière de surveillance des **émissions du moteur** valorisant le biogaz, l'ISSeP estime pertinente la réalisation par ses soins d'une campagne de contrôle. Elle sera prévue dans le courant de 2013, en fonction des disponibilités de la cellule "Emissions atmosphériques" de l'ISSeP. Concernant les dépassements de normes pour le CO, le retour d'expérience d'autres exploitants de C.E.T. du réseau confrontés au même problème a montré la difficulté de maîtriser les paramètres de combustion du moteur ou de post-traitement des fumées pour se maintenir sous la valeur maximale autorisée. Dès lors, l'ISSeP n'a pas de recommandation précise en ce sens.

Concernant les **émissions surfaciques**, étant donné les très faibles émissions mesurées lors de cette campagne et dans le cadre de l'autocontrôle et vu le statut réhabilité du site, l'ISSeP estime que tant que les installations de pompage et de valorisation du biogaz fonctionnent de façon optimale il n'est plus nécessaire de procéder à des mesures d'émissions surfaciques sur ce C.E.T.

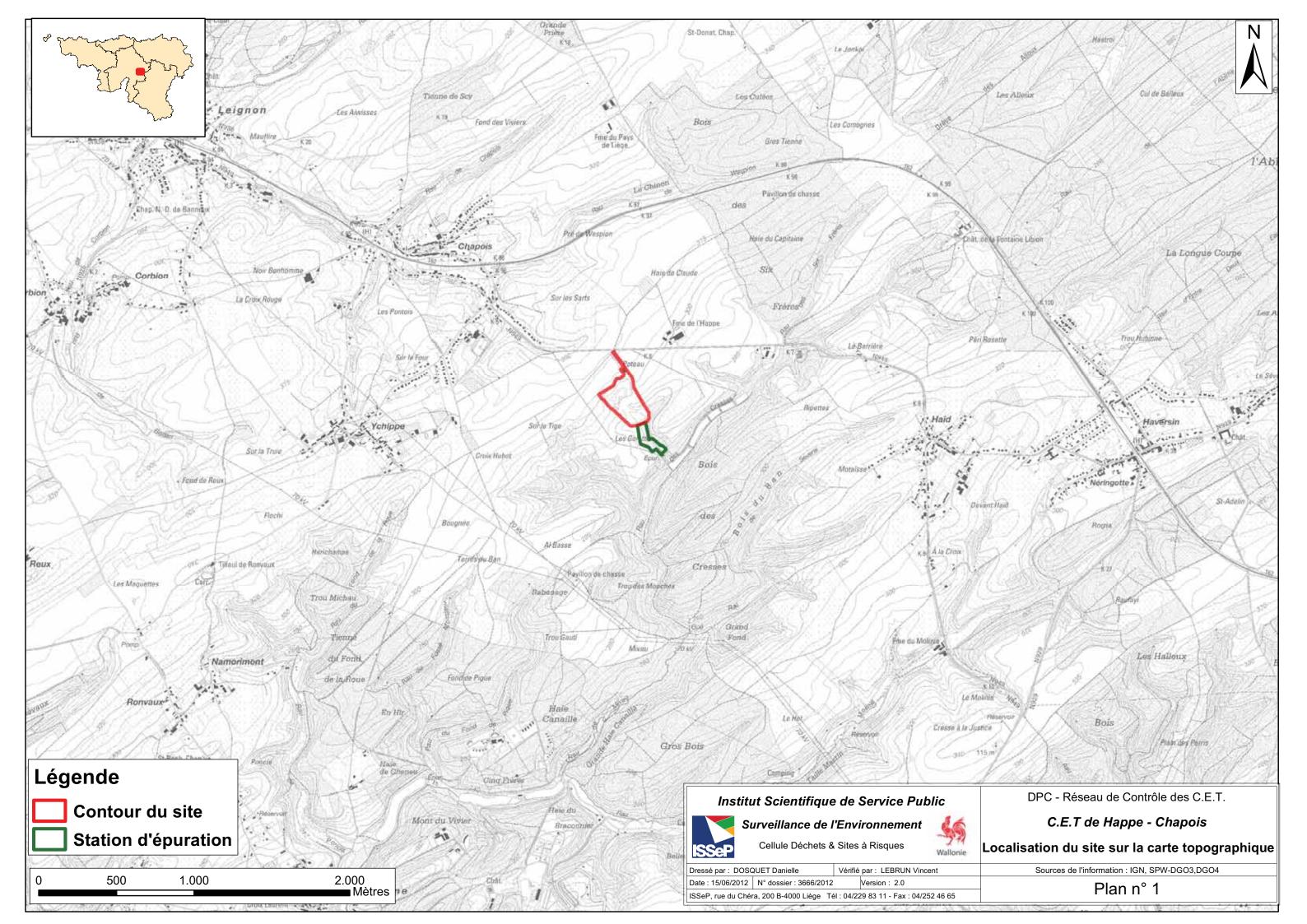
La **qualité de l'air ambiant** sur le C.E.T. étant jugée satisfaisante en mode de fonctionnement normal des installations de postgestion, la surveillance pourrait être davantage allégée et ciblée sur un set plus limité de paramètres qui permettrait de déceler tout dysfonctionnement au niveau de réseau de dégazage (fuite de biogaz, ...). Le monitoring continu des concentrations en méthane dans l'air ambiant prélevé au niveau du local technique (contenant par ailleurs l'analyseur) semble suffisant pour l'ISSeP.

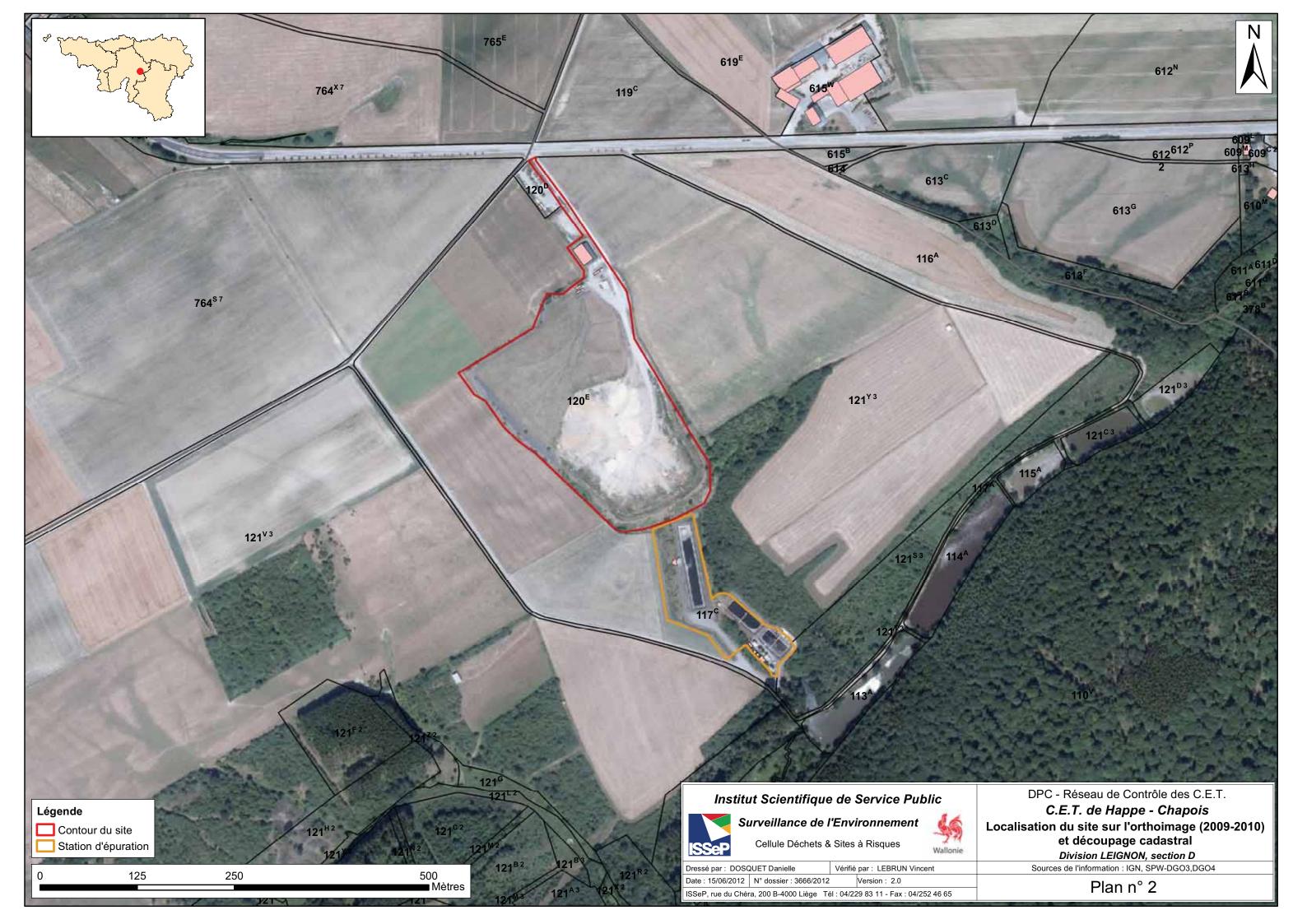
E. Bietlot, S. Garzaniti Attachés, Cellule Déchets & SAR C. Collart
Responsable,
Cellule Déchets & SAR

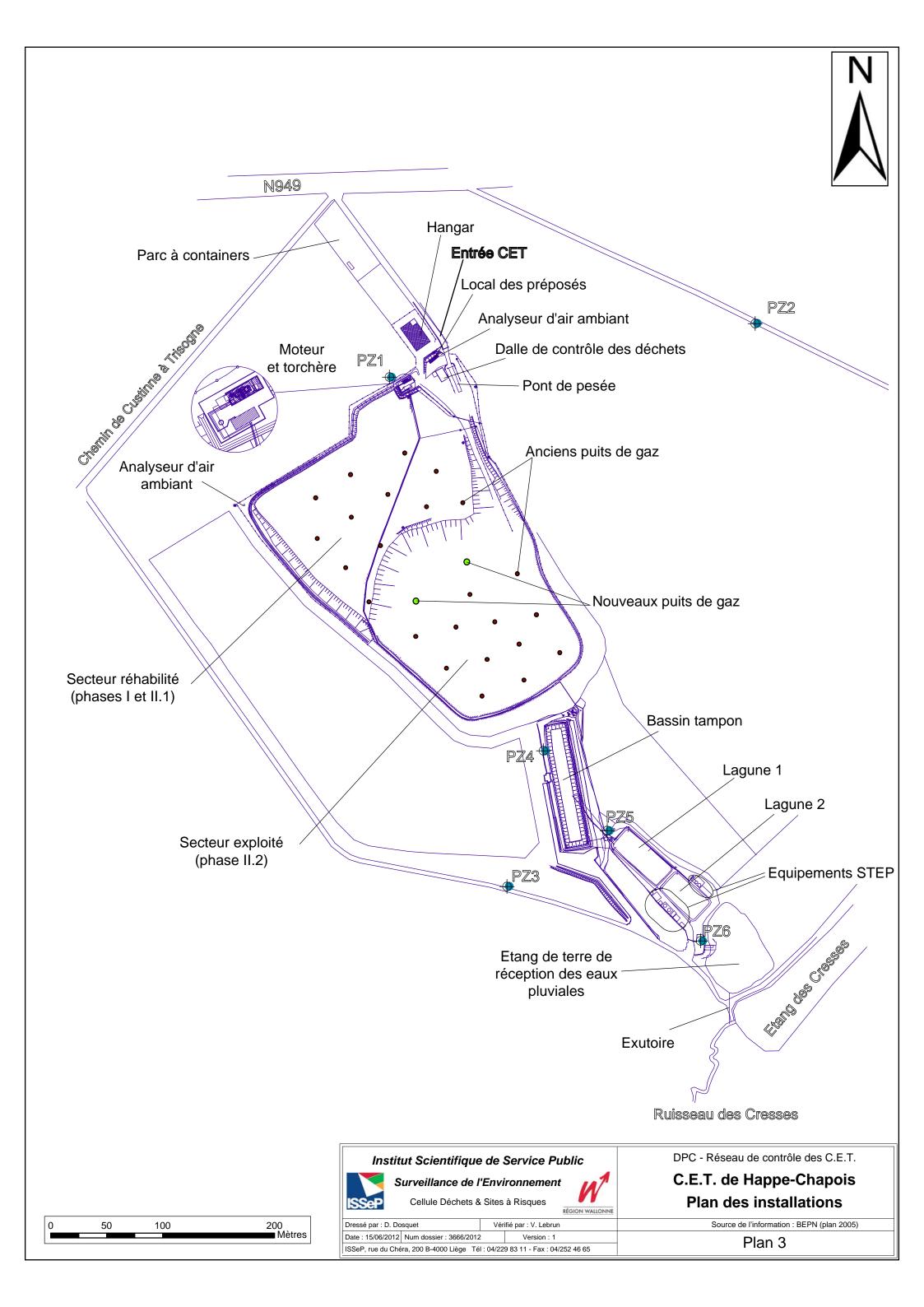
Plans

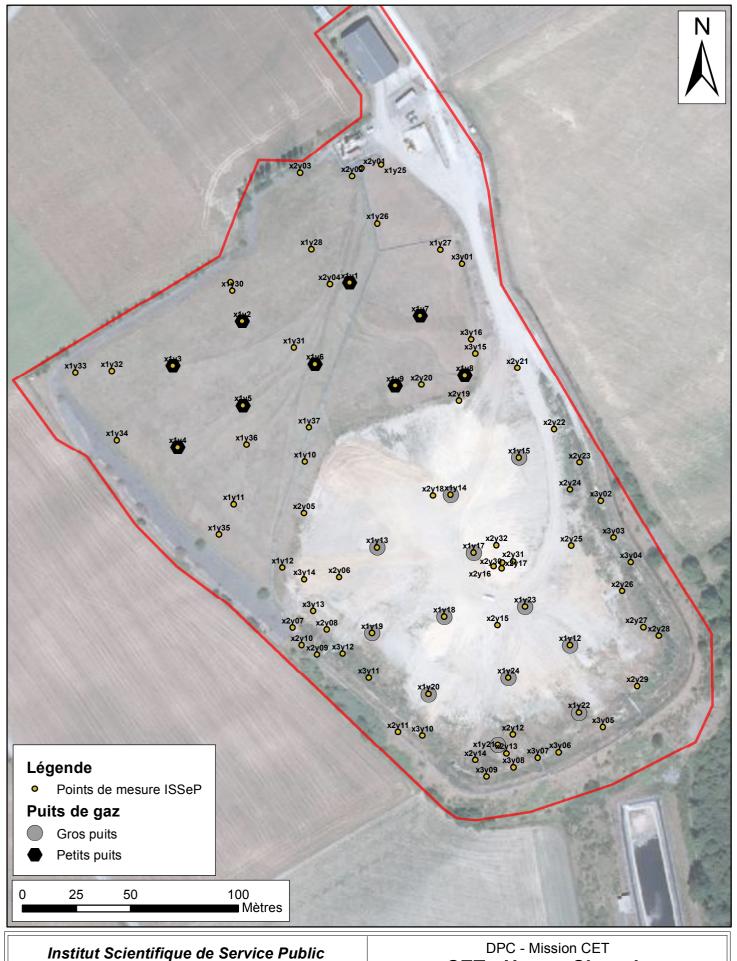
Plan 1 : Localisation du site sur la carte topographique de l'IGN au 1/10.000e

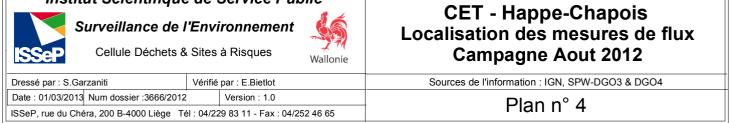
Plan 2 : Localisation sur l'orthoimage (2009-2010) et découpage cadastral

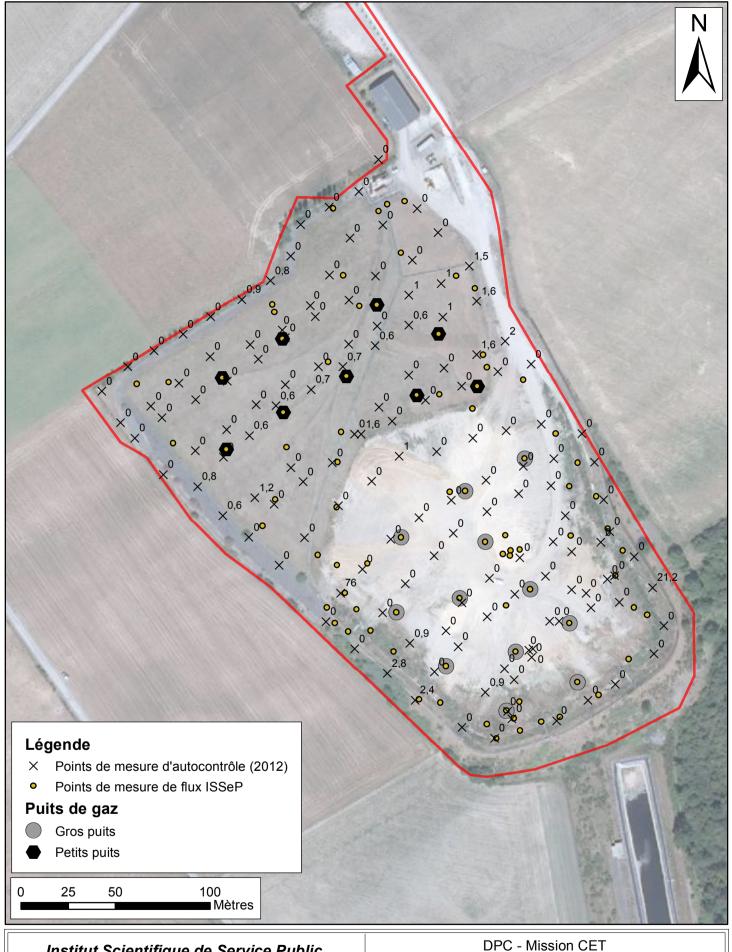

Plan 3: Plan des installations 2009 (source BEP Environnement)

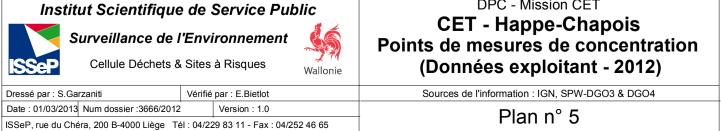

Plan 4 : Localisation de points de mesures d'émissions surfaciques – Campagne ISSeP de août 2012

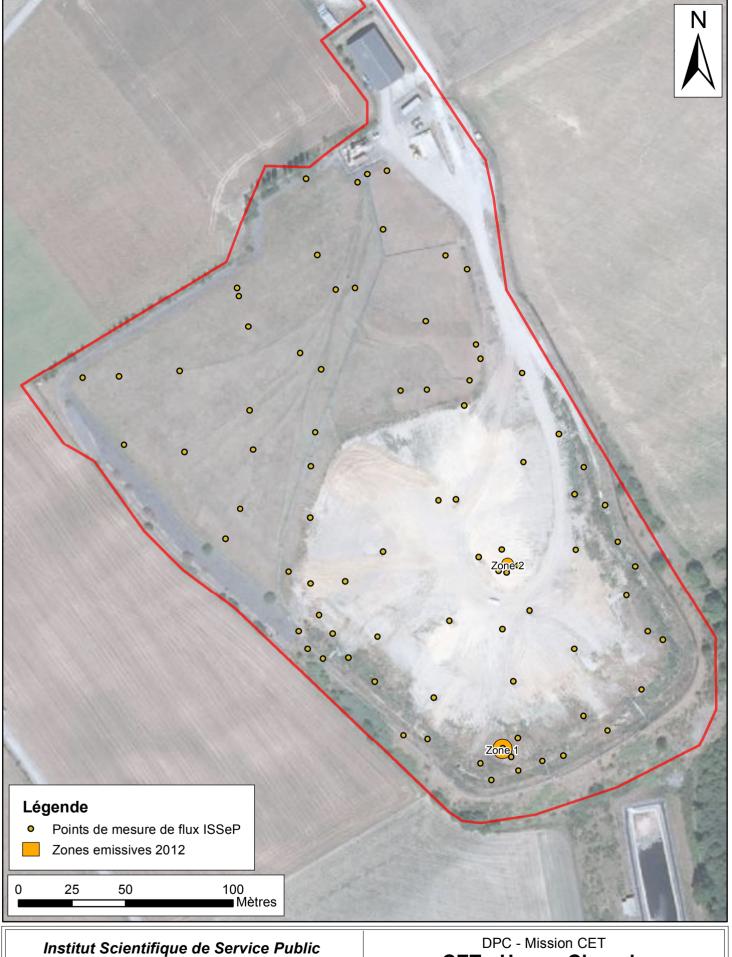

Plan 5 : Localisation de points de mesures d'émissions surfaciques – Campagne d'autocontrôle, 3^{ème} trimestre 2012 – Données SPAQuE (source BEP Environnement)

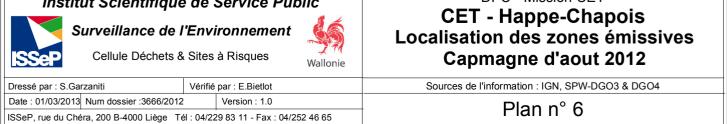

Plan 6 : Localisation des zones émissives - Campagne ISSeP de août 2012











Annexe 1 : Autocontrôles de la composition du biogaz et des fumées du moteur à gaz (données exploitant) 7 pages

Autocontrôles du biogaz

C.E.T. de Chapois

Laboratoire : DCMS

Fréquence d'analyse : Semestrielle

Période d'analyses : Décembre 2010 à Juin 2012

Eléments majeurs						
Paramètres	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne	
Méthane (%v/v)	37	53	50	41	45,25	
Oxygène (% v/v)	2,8	0,86	0,75	0,83	1,31	
Dioxyde de carbone (% v/v)	22	33	30	26	27,75	
Azote (%v/v)	38	13,1	19,4	32	25,625	
Monoxyde de carbone (%v/v)	<0,1	< 0,1	<0,1	< 0,1	n.d.	
Hydrogène (%v/v)	<1	<1	<1	<1	n.d.	
H2S (mg/Nm³)	1400	4700	2400	1300	2450	

COV					
Mercaptans et Sulfures (µg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
SULFURE D'HYDROGENE	1400000	4700000	2400000	1300000	2450000
METHANETHIOL	68	2100	250	200	654,5
ETHANETHIOL	62	290	200	140	173
SULFURE DE DIMETHYLE	53	1600	240	340	558,25
SULFURE DE CARBONE	970	4200	1600	1700	2117,5
2-PROPANETHIOL	3800	32000	11000	1100	11975
1-PROPENE-1-THIOL	<5	21	12	<5	16,5
2-PROPANETHIOL, 2-METHYL	81	170	140	170	140,25
1-PROPANETHIOL	170	410	390	370	335
ETHANE, (METHYLTHIO)	16	110	47	51	56
THIIRANE, METHYL	<5	10	5	<5	7,5
2-BUTANETHIOL	6000	22000	12000	11000	12750
THIOPHENE	180	710	450	420	440
PROPANE, 2-(METHYLTHIO)	330	990	560	750	657,5
1-PROPENE, 3-(METHYLTHIO)	<5	<5	<5	<5	n.d.
trans-1-PROPENE, 1-(METHYLTHIO)	<5	<5	<5	<5	n.d.
cis-1-PROPENE, 1-(METHYLTHIO)	<5	<5	<5	<5	n.d.
1-PROPANETHIOL, 2-METHYL	45	87	62	47	60,25
ACIDE ETHANETHIOIQUE, S-METHYL ESTER	<5	<5	<5	<5	n.d.
ETHANE, 1,1'-THIOBIS	<5	<5	<5	<5	n.d.
1-BUTANETHIOL	<5	<5	<5	<5	n.d.
PROPANE, 1-(METHYLTHIO)	34	100	60	50	61
DISULFURE DE DIMETHYLE	9	150	21	19	49,75
2-PENTANETHIOL	110	380	200	100	197,5
2-BUTANETHIOL,2-METHYL	51	200	110	71	108
Σ THIOPHENES, METHYL	270	1900	970	870	1002,5
BUTANE, 2-(METHYLTHIO)	110	290	160	230	197,5
PROPANE, 2-METHYL-1-(METHYLTHIO)	<5	<5	<5	<5	n.d.
1,3-OXATHIOLANE	<5	300	130	140	190
1-PENTANETHIOL	<5	<5	<5	<5	n.d.
DISULFURE DE METHYLETHYLE	<5	<5	<5	<5	n.d.
DISULFURE DE METHYLPROPYLE	<5	<5	<5	<5	n.d.
TRISULFURE DE DIMETHYLE	<5	<5	<5	<5	n.d.
Somme des organosoufrés (µg/Nm³)	1412359	4768018	2428607	1317768	
Somme des organosoufrés (mg/Nm³)	1412	4768	2429	1318	

Alcanes (µg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
PROPANE, 2-METHYL	3300	8900	6000	4700	5725
n-BUTANE	8400	14000	12000	9000	10850
BUTANE, 2-METHYL	3700	10000	7200	6300	6800
n-PENTANE	2500	6000	4900	6000	4850
BUTANE, 2,2-DIMETHYL	190	730	410	470	450
BUTANE, 2,3-DIMETHYL	350	960	660	630	650
PENTANE, 2-METHYL	1000	2200	1800	1800	1700
PENTANE, 3-METHYL	610	1300	970	1000	970
n-HEXANE	480	760	740	760	685
HEXANE, 2-METHYL	1400	3300	2800	2300	2450
PENTANE, 2,3-DIMETHYL	1300	2500	1500	1500	1700
HEXANE, 3-METHYL	2100	3700	2800	3100	2925
n-HEPTANE	2700	6300	4400	4400	4450
Σ ALCANES C8	3000	6300	4400	4500	4550
n-OCTANE	1800	6000	4200	3800	3950
Σ ALCANES C9	4900	15000	8800	8600	9325
n-NONANE	7300	21000	15000	14000	14325
Σ ALCANES C10	16000	41000	29000	28000	28500
n-DECANE	10000	34000	24000	27000	23750
Σ ALCANES C11	7200	23000	15000	15000	15050
n-UNDECANE	2800	12000	8500	9000	8075
HEPTANE, 2,2,4,6,6-PENTAMETHYL	840	2800	1700	1700	1760
Σ ALCANES C12	1500	6100	3400	4300	3825
n-DODECANE	300	1800	970	1400	1118
n-TRIDECANE	31	180	110	290	153
Somme des alcanes (µg/Nm³)	83701	229830	161260	159550	133
Somme des alcanes (mg/Nm³)	84	230	161	160	
Alcènes (µg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
1-PROPENE	3300	9400	8800	9600	7775
1-BUTENE	970	3100	1900	2400	2092,5
trans-2-BUTENE	200	650	480	660	497,5
cis-2-BUTENE	140	410	340	470	340
Σ ALCENES C5	1200	2600	1800	2000	1900
Σ ALCENES C6	300	680	610	900	622,5
Σ ALCENES C7	95	250	170	260	193,75
Σ ALCENES C8	43	160	96	110	102,25
Somme des alcènes (µg/Nm³)	6248	17250	14196	16400	- , -
Somme des alcènes (mg/Nm³)	6,2	17,3	14,2	16,4	
Cycloalcanes (µg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
CYCLOPENTANE	460	2200	810	730	1050
CYCLOPENTANE, METHYL	410	870	550	560	597,5
CYCLOHEXANE	2500	4300	3500	3600	3475
Σ CYCLOPENTANES, DIMETHYL	1100	1800	1400	1500	1450
CYCLOHEXANE, METHYL	2700	5200	4100	3300	3825
CYCLOPENTANE, ETHYL	320	540	400	480	435
Σ CYCLOHEXANES, DIMETHYL	1400	2600	2000	1600	1900
Σ CYCLOPENTANES, ETHYLMETHYL	440	930	730	680	695
Σ CYCLOPENTANES, TRIMETHYL	170	280	210	220	220
CYCLOHEXANE, ETHYL	930	2000	1500	1400	1457,5
Σ CYCLOHEXANES, TRIMETHYL	2000	4500	3100	3000	3150
Σ CYCLOHEXANES, ETHYLMETHYL	1600	3500	2900	2300	2575
CYCLOHEXANE, PROPYL	1900	5100	3400	3500	3475
Σ CYCLOALCANES C10	4400	9900	8100	7000	7350
CYCLOHEXANE, BUTYL	950	2600	2000	2000	1887,5
CYCLOHEXANE, PENTYL	130	530	390	370	355
Somme des cycloalcanes (µg/Nm³)	21410	46850	35090	32240	300
Somme des cycloalcanes (mg/Nm³)	21,4	46,9	35,1	32,2	

Alcools (μg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
ETHANOL	<10	<10	<10	<10	n.d.
2-PROPANOL	<10	800	200	120	281
2-PROPANOL, 2-METHYL	<10	2200	700	1100	1001
1-PROPANOL	<10	<10	<10	<10	n.d.
2-BUTANOL	<10	400	190	<10	150
1-PROPANOL, 2-METHYL	<10	<10	<10	<10	n.d.
2-BUTANOL, 2-METHYL	<10	54	18	<10	n.d.
1-BUTANOL	<10	<10	<10	<10	n.d.
2-BUTANOL, 3-METHYL	<10	25	<10	<10	n.d.
1-PENTANOL	<10	<10	<10	<10	n.d.
2-PENTANOL	<10	37	<10	<10	n.d.
2-PENTANOL, 4-METHYL	<10	50	<10	<10	n.d.
3-PENTANOL	<10	57	<10	<10	n.d.
1-HEXANOL	<10	<10	<10	<10	n.d.
2-HEXANOL	<10	<10	<10	<10	n.d. n.d.
3-HEXANOL	<10	<10	<10	<10	n.d. n.d.
Somme des alcools (µg/Nm³)	n.d.	3623	1108	1220	n.u.
Somme des alcools (mg/Nm³)	n.d.	3,6	1,1	1,2	
Chlorofluorocarbones (µg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
1,1,1,2,3,3,3-HEPTAFLUOROPROPANE	<5	<5	<5	<5	n.d.
TRIFLUOROETHENE	<5	<5	<5	<5	n.d.
1,1-DIFLUOROETHANE	22	77	39	47	46
1,1,1,2-TETRAFLUOROETHANE	380	1200	1100	980	915
1-CHLORO-2-FLUOROETHENE	8	27	22	23	20
1,1,2,2-TETRAFLUOROETHANE	<5	<5	<5	<5	n.d.
CHLORODIFLUOROMETHANE	910	610	960	910	848
DICHLORODIFLUOROMETHANE	780	750	750	800	770
CHLOROTRIFLUOROETHENE	7	9	6	<5	6
1-CHLORO-1,1-DIFLUOROETHANE	380	1300	660	780	780
1,2-DICHLORO-1,1,2,2-TETRAFLUOROETHANE	100	66	77	79	81
CHLOROFLUOROMETHANE	380	250	300	590	380
DICHLOROFLUOROMETHANE	420	870	640	830	690
1-CHLORO-1-FLUOROETHANE	210	400	250	210	268
1,2-DICHLORO-1,1,2-TRIFLUOROETHANE	5	16	10	8	10
TRICHLOROFLUOROMETHANE	81	200	130	92	126
1,1-DICHLORO-1-FLUOROETHANE	260	1300	670	500	683
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	<5	<5	<5	<5	n.d.
Somme des chlorofluorocarbones (µg/Nm³)	3943	7075	5614	5849	
Somme des chlorofluorocarbones (mg/Nm³)	3,9	7,1	5,6	5,8	
Composés chlorés (µg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
CHLORURE DE VINYLE	76	110	74	96	89
CHLOROETHANE	37	32	33	40	35,5
1,1-DICHLOROETHYLENE	<5	14	10	5	7,875
1,1-DICHLOROETHANE	16	38	19	22	23,75
trans-1,2-DICHLOROETHYLENE	<5	12	11	8	8,375
cis-1,2-DICHLOROETHYLENE	140	330	260	210	235
DICHLOROMETHANE	<5	<5	<5	<5	n.d.
3-CHLORO-1-BUTENE	<5	<5	<5	<5	n.d.
1,2-DICHLOROETHANE	43	120	59	71	73,25
1,1,1-TRICHLOROETHANE	<5	<5	<5	<5	n.d.
1,2-DICHLOROPROPANE	110	620	230	270	307,5
TRICHLOROETHYLENE	110	380	180	200	217,5
TETRACHLOROETHYLENE	70	200	100	120	122,5
CHLOROBENZENE	310	430	310	280	332,5
1,4-DICHLOROBENZENE	260	530	490	620	475
Somme des organochlorés (µg/Nm³)	41693,943	43531,075	42670,614	43034,849	
Somme des organochlorés (mg/Nm³)	41,7	43,5	42,7	43,0	

2-PROPANONE	Cétones (µg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
2-BUTANONE, 3-METHYL 160 1500 610 650 730	2-PROPANONE	540	11000	2500	2100	4035
2-PENTANONE	2-BUTANONE	450	8300	2200	2500	3363
3-PENTANONE 50	2-BUTANONE, 3-METHYL	160	1500	610	650	730
2-PENTANONE, 4-METHYL 90 1600 370 420 620 320 320 111 35 210 120 79 111 35 210 120 79 111 35 210 120 79 111 35 210 120 150 129 33 34EXANONE 410 160 680 410 440 423 34EXANONE 410 160 49 51 66 66 49 51 66 66 49 51 66 66 40 52 62 82 90 400	2-PENTANONE	110	1300	410	470	573
3-PENTANONE 2-METHYL 35 210 120 79 111	3-PENTANONE	50	450	200	230	233
2-PENTANONE, 3-METHYL 160	2-PENTANONE, 4-METHYL	90	1600	370	420	620
3-HEXANONE	3-PENTANONE, 2-METHYL	35	210	120	79	111
2-HEYTANONE <10 160 49 51 66	2-PENTANONE, 3-METHYL	160	680	410	440	423
2-HEPTANONE	3-HEXANONE	<10	240	120	150	129
S-HEPTANONE	2-HEXANONE	<10	160	49	51	66
Somme des cétones (µg/Nm²) 1.595 2.58.2 7.0 7.237	2-HEPTANONE	<10	220	52	82	90
Somme des cétones (mg/Nm²)	3-HEPTANONE	<10	160	51	65	70
Hydrocarbures MonoAromatiques (µg/Nm²)	Somme des cétones (µg/Nm³)	1595	25820	7092	7237	
BENZENE	Somme des cétones (mg/Nm³)	1,6	25,8	7,1	7,2	
TOLUENE	Hydrocarbures MonoAromatiques (μg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
ETHYLBENZENE	BENZENE	1600	9000	4900	5300	5200
m-+p-XYLENES 6800 24000 15000 15000 15200 0-XYLENE 2200 7400 5100 4800 4875 1500 4800 4875 1500 4800 4875 1500 4800 4875 1500 4800 4875 1500 4800 4875 1500 4800 4875 1500 4800 4875 1500	TOLUENE	8600	33000	19000	17000	19400
o-XYLENE 2200 7400 5100 4800 4875 STYRENE 190 920 580 460 537,5 ISOPROPYLBENZENE 600 2600 1300 1500 1530 n-PROPYLBENZENE 720 2300 1600 1500 1530 p-ETHYLTOLUENE 1440 4200 2800 2800 2800 n-ETHYLTOLUENE 500 1900 1000 990 1098 1,3.5-TRIMETHYLBENZENE 820 2500 2000 1900 1805 o-ETHYLTOLUENE 810 2400 1600 1603 1603 1,2,4-TRIMETHYLBENZENE 2000 67000 5300 4400 46250 1,2,3-TRIMETHYLBENZENE 21000 67000 5300 44000 46250 1,2,3-TRIMETHYLBENZENE 2200 7000 4500 5100 4700 Somme des HMA (ng/Nm³) 5573 189620 131380 120450 Somme des HMA (ng/Nm³) 55,7 189,6	ETHYLBENZENE	5800	18000	13000	13000	12450
STYRENE	m-+p-XYLENES	6800	24000	15000	15000	15200
ISOPROPYLBENZENE 600 2600 1300 1300 1450						
n-PROPYLBENZENE 720 2300 1600 1500 1530 p-ETHYLTOLUENE 1400 4200 2800 2800 2800 m-ETHYLTOLUENE 500 1900 1000 990 1098 1,3,5-TRIMETHYLBENZENE 820 2500 2000 1900 1805 o-ETHYLTOLUENE 810 2400 1600 1600 4603 1,2,4-TRIMETHYLBENZENE 2000 67000 53000 44000 46250 p-ISOPROPYLTOLUENE 21000 67000 53000 44000 46250 1,2,3-TRIMETHYLBENZENE 490 1400 1100 1200 1048 Σ-C4 ALKYLBENZENES 2200 7000 4500 5100 4700 Somme des HMA (μg/Nm³) 55730 189620 13130 120450 Somme des HMA (μg/Nm³) 5573 1896. 131,4 120,5 Hydrocarbures PolyAromatiques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne DECAHYDRONAPHTHALENE <td></td> <td></td> <td></td> <td></td> <td></td> <td>537,5</td>						537,5
p-ETHYLTOLUENE 1400 4200 2800 2800 2800 m-ETHYLTOLUENE 500 1900 1000 990 1098 1.3,5-TRIMETHYLBENZENE 820 2500 2000 1900 1805 c-ETHYLTOLUENE 810 2400 1600 1600 1600 1603 1,2,4-TRIMETHYLBENZENE 2000 6000 4900 4500 4350 p-ISOPROPYLTOLUENE 21000 67000 53000 44000 46250 1,2,3-TRIMETHYLBENZENE 2900 7000 4500 5100 4700 Somme des HMA (µg/Nm³) 55730 189620 131380 120450 Somme des HMA (µg/Nm³) 55,7 189,6 131,4 120,5 Hydrocarbures PolyAromatiques (µg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne NAPHTHALENE 15 46 34 32 31,8 DECAHYDRONAPHTHALENE 280 770 620 660 583 DHYDROINDENE 240 320<						
m-ETHYLTOLUENE						
1.3,5-TRIMETHYLBENZENE 820 2500 2000 1900 1805						
o-ETHYLTOLUENE 810 2400 1600 1600 1603 1,2,4-TRIMETHYLBENZENE 2000 6000 4900 4500 4350 p-ISOPROPYLTOLUENE 21000 67000 53000 44000 46250 1,2,3-TRIMETHYLBENZENES 2200 7000 4500 5100 4700 Somme des HMA (µg/Nm³) 55730 189620 131380 120450 Somme des HMA (mg/Nm²) 55,7 189,6 131,4 120,5 Hydrocarbures PolyAromatiques (µg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne NAPHTHALENE 15 46 34 32 31,8 120,5 Hydrocarbures PolyAromatiques (µg/Nm³) 15 46 34 32 31,8 DECAHYDRONAPHTHALENE 280 770 620 660 583 DHYDROINDENE 240 320 400 400 340 Somme des HPA (µg/Nm³) 995 2436 1904 1982 Somme des HPA (µg/Nm³) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1.2,4-TRIMETHYLBENZENE 2000 6000 4900 4500 4350 p-ISOPROPYLTOLUENE 21000 67000 53000 44000 46250 1,2,3-TRIMETHYLBENZENE 490 1400 1100 1200 1048 2 C4 ALKYLBENZENES 2200 7000 4500 5100 4700 Somme des HMA (µg/m³) 55730 189620 131380 120450 Somme des HMA (mg/Nm³) 55730 189620 131380 120450 Hydrocarbures PolyAromatiques (µg/Nm³) 557, 189,6 131,4 120,5 Hydrocarbures PolyAromatiques (µg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne NAPHTHALENE 15 46 34 32 31,8 DECAHYDRONAPHTHALENE 460 1300 850 890 875 Σ ΜΕΤΗΥLDECAHYDRONAPHTHALENE 240 320 400 400 340 Somme des HPA (µg/Nm³) 995 2436 1904 1982 Somme des HPA (µg/Nm³) 1,0 2,4 1,9 2,0 Hydrocarbures monoterpéniques (µg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne CAMPHENE 1400 4700 3300 3000 3100 ALPHA-PINENE 13000 79000 41000 42000 43750 BETA-MYRCENE 5 5 5 5 5 BETA-PINENE 1600 6000 6000 6000 6350 ALPHA-TERPINENE 1600 6000 4000 3800 3850 SASOBALPHA-TERPINENE 1400 12000 6000 6000 6350 ALPHA-TERPINENE 1600 580 390 410 405 LIMONENE 1600 580 390 410 405 LIMONENE 1600 3300 470 395,25 CAMPHRE 81 700 330 470 395,25 CARVOMENTHONE 5 5 5 5 5 CARVOMENTHONE 5 5 5 5 Somme des HMT (µg/Nm³) 29168 146616 78149 75884						
p-ISOPROPYLTOLUENE 21000 67000 53000 44000 46250 1,2,3-TRIMETHYLBENZENE 490 1400 1100 1200 1048 Σ C4 ALKYLBENZENES 2200 7000 4500 5100 4700 Somme des HMA (μg/Nm³) 55730 189620 131380 120450 Somme des HMA (mg/Nm³) 55,7 189,6 131,4 120,5 Hydrocarbures PolyAromatiques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne NAPHTHALENE 15 46 34 32 31,8 BECAHYDRONAPHTHALENE 280 770 620 660 583 585 S90 875 EMETHYLDECAHYDRONAPHTHALENES 280 770 620 660 583 51HYDROINDENE 240 320 400 400 34						
1,2,3-TRIMETHYLBENZENE 490 1400 1100 1200 1048 Σ C4 ALKYLBENZENES 2200 7000 4500 5100 4700 Somme des HMA (μg/Nm³) 55730 189620 131380 120450 Somme des HMA (mg/Nm³) 5573 189,6 131,4 120,5 Hydrocarbures PolyAromatiques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne NAPHTHALENE 15 46 34 32 31,8 DECAHYDRONAPHTHALENE 280 770 620 660 583 DHYDROINDENE 240 320 400 400 340 Somme des HPA (ng/Nm³) 995 2436 1904 1982 Somme des HPA (mg/Nm³) 1,0 2,4 1,9 2,0 Hydrocarbures monoterpéniques (µg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne CAMPHENE 1400 4700 3300 3000 3100 ALPHA-PINENE 1500 6000 4000 48750 5 5 5 1.0 1.						
Σ C4 ALKYLBENZENES 2200 7000 4500 5100 4700 Somme des HMA (μg/Nm³) 55730 189620 131380 120450 Somme des HMA (mg/Nm²) 55730 189,6 131,4 120,5 Hydrocarbures PolyAromatiques (μg/Nm²) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne NAPHTHALENE 15 46 34 32 31,8 DECAHYDRONAPHTHALENE 460 1300 850 890 875 Σ METHYLDECAHYDRONAPHTHALENES 280 770 620 660 583 DIHYDROINDENE 240 320 400 400 340 Somme des HPA (μg/Nm³) 995 2436 1904 1982 Somme des HPA (mg/Nm³) 1,0 2,4 1,9 2,0 Hydrocarbures monoterpéniques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne CAMPHENE 13000 79000 41000 42000 43750 BETA-MYRCENE 5	*					
Somme des HMA (μg/Nm³) 55730 189620 131380 120450 Somme des HMA (mg/Nm³) 55,7 189,6 131,4 120,5 Hydrocarbures PolyAromatiques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne NAPHTHALENE 15 46 34 32 31,8 DECAHYDRONAPHTHALENE 460 1300 850 890 875 2 METHYLDECAHYDRONAPHTHALENES 280 770 620 660 583 DIHYDROINDENE 240 320 400 400 340 Somme des HPA (μg/Nm³) 995 2436 1904 1982 Somme des HPA (mg/Nm³) 1,0 2,4 1,9 2,0 Hydrocarbures monoterpéniques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne CAMPHENE 1400 4700 3300 3000 3100 ALPHA-PINENE 1500 6000 4000 3800 3850 BETA-MYRCENE 1600 60						
Somme des HMA (mg/Nm³) 55,7 189,6 131,4 120,5 Hydrocarbures PolyAromatiques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne NAPHTHALENE 15 46 34 32 31,8 DECAHYDRONAPHTHALENE 460 1300 850 890 875 Σ METHYLDECAHYDRONAPHTHALENES 280 770 620 660 583 DIHYDROINDENE 240 320 400 400 340 Somme des HPA (μg/Nm³) 995 2436 1904 1982 Somme des HPA (mg/Nm³) 1,0 2,4 1,9 2,0 Hydrocarbures monoterpéniques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne CAMPHENE 1400 4700 3300 3000 3100 ALPHA-PINENE 13000 79000 41000 42000 43750 BETA-MYRCENE <5						4700
Hydrocarbures PolyAromatiques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne NAPHTHALENE 15 46 34 32 31,8 DECAHYDRONAPHTHALENE 460 1300 850 890 875 Σ METHYLDECAHYDRONAPHTHALENES 280 770 620 660 583 DIHYDROINDENE 240 320 400 400 340 Somme des HPA (μg/Nm³) 995 2436 1904 1982 Somme des HPA (mg/Nm³) 1,0 2,4 1,9 2,0 Hydrocarbures monoterpéniques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne CAMPHENE 13000 79000 41000 42000 43750 BETA-MYRCENE 5 5 5 5 1.0 2.0 400 4000 3800 3850 3850 3850 3850 3850 3850 3850 360 3800 3850 3850 3850 3850	, ,					
NAPHTHALENE						3.5
DECAHYDRONAPHTHALENE 460 1300 850 890 875 Σ METHYLDECAHYDRONAPHTHALENES 280 770 620 660 583 DIHYDROINDENE 240 320 400 400 340 Somme des HPA (μg/Nm³) 995 2436 1904 1982 Somme des HPA (mg/Nm³) 1,0 2,4 1,9 2,0 Hydrocarbures monoterpéniques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne CAMPHENE 1400 4700 3300 3000 3100 ALPHA-PINENE 13000 79000 41000 42000 43750 BETA-MYRCENE <5						·
Σ METHYLDECAHYDRONAPHTHALENES 280 770 620 660 583 DIHYDROINDENE 240 320 400 400 340 Somme des HPA (μg/Nm³) 995 2436 1904 1982 Somme des HPA (mg/Nm³) 1,0 2,4 1,9 2,0 Hydrocarbures monoterpéniques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne CAMPHENE 1400 4700 3300 3000 3100 ALPHA-PINENE 13000 79000 41000 42000 43750 BETA-MYRCENE <5						
DIHYDROINDENE 240 320 400 400 340 Somme des HPA (μg/Nm³) 995 2436 1904 1982 Somme des HPA (mg/Nm³) 1,0 2,4 1,9 2,0 Hydrocarbures monoterpéniques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne CAMPHENE 1400 4700 3300 3000 3100 ALPHA-PINENE 13000 79000 41000 42000 43750 BETA-MYRCENE <5						
Somme des HPA (μg/Nm³) 995 2436 1904 1982 Somme des HPA (mg/Nm³) 1,0 2,4 1,9 2,0 Hydrocarbures monoterpéniques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne CAMPHENE 1400 4700 3300 3000 3100 ALPHA-PINENE 13000 79000 41000 42000 43750 BETA-MYRCENE <5						
Somme des HPA (mg/Nm³) 1,0 2,4 1,9 2,0 Hydrocarbures monoterpéniques (μg/Nm³) 6/12/2010 14/06/2011 12/12/2011 27/06/2012 Moyenne CAMPHENE 1400 4700 3300 3000 3100 ALPHA-PINENE 13000 79000 41000 42000 43750 BETA-MYRCENE <5						340
Hydrocarbures monoterpéniques (μg/Nm³) $6/12/2010$ $14/06/2011$ $12/12/2011$ $27/06/2012$ MoyenneCAMPHENE 1400 4700 3300 3000 3100 ALPHA-PINENE 13000 79000 41000 42000 43750 BETA-MYRCENE <5 <5 <5 <5 n.d.BETA-PINENE 1600 6000 4000 3800 3850 3-CARENE 1400 12000 6000 6000 6000 6350 ALPHA-TERPINENE 240 580 390 410 405 LIMONENE 10000 39000 20000 17000 21500 Σ HYDROCARBURES MONOTERPENIQUES 910 2800 1900 1900 $1877,5$ CAMPHRE 81 700 330 470 $395,25$ CARVOMENTHONE <5 <5 <5 <5 <5 SANTENE 26 66 49 44 $46,25$ TERPINOLENE 440 1400 920 930 $922,5$ FENCHONE 71 370 260 330 $257,75$ Somme des HMT (μ g/Nm³) 29168 146616 78149 75884	, 0					
CAMPHENE 1400 4700 3300 3000 3100 ALPHA-PINENE 13000 79000 41000 42000 43750 BETA-MYRCENE <5 <5 <5 <5 n.d. BETA-PINENE 1600 6000 4000 3800 3850 3-CARENE 1400 12000 6000 6000 6350 ALPHA-TERPINENE 240 580 390 410 405 LIMONENE 10000 39000 20000 17000 21500 Σ HYDROCARBURES MONOTERPENIQUES 910 2800 1900 1900 1877,5 CAMPHRE 81 700 330 470 395,25 CARVOMENTHONE <5 <5 <5 <5 <5 SANTENE 26 66 49 44 46,25 TERPINOLENE 440 1400 920 930 922,5 FENCHONE 71 370 260 330 257,75 Somme des HMT (µg/Nm³) 29168 146616 78149 75884						Movenne
ALPHA-PINENE1300079000410004200043750BETA-MYRCENE <5 <5 <5 <5 n.d.BETA-PINENE 1600 6000 4000 3800 3850 3-CARENE 1400 12000 6000 6000 6350 ALPHA-TERPINENE 240 580 390 410 405 LIMONENE 10000 39000 20000 17000 21500 Σ HYDROCARBURES MONOTERPENIQUES 910 2800 1900 1900 $1877,5$ CAMPHRE 81 700 330 470 $395,25$ CARVOMENTHONE <5 <5 <5 <5 n.d.SANTENE 26 66 49 44 $46,25$ TERPINOLENE 440 1400 920 930 $922,5$ FENCHONE 71 370 260 330 $257,75$ Somme des HMT (µg/Nm³) 29168 146616 78149 75884						•
BETA-MYRCENE<5<5<5n.d.BETA-PINENE160060004000380038503-CARENE140012000600060006350ALPHA-TERPINENE240580390410405LIMONENE1000039000200001700021500Σ HYDROCARBURES MONOTERPENIQUES9102800190019001877,5CAMPHRE81700330470395,25CARVOMENTHONE<5						
BETA-PINENE160060004000380038503-CARENE140012000600060006350ALPHA-TERPINENE240580390410405LIMONENE1000039000200001700021500Σ HYDROCARBURES MONOTERPENIQUES9102800190019001877,5CAMPHRE81700330470395,25CARVOMENTHONE<5						
3-CARENE140012000600060006350ALPHA-TERPINENE240580390410405LIMONENE1000039000200001700021500Σ HYDROCARBURES MONOTERPENIQUES9102800190019001877,5CAMPHRE81700330470395,25CARVOMENTHONE<5						
ALPHA-TERPINENE 240 580 390 410 405 LIMONENE 10000 39000 20000 17000 21500 Σ HYDROCARBURES MONOTERPENIQUES 910 2800 1900 1900 1877,5 CAMPHRE 81 700 330 470 395,25 CARVOMENTHONE <5						
LIMONENE 10000 39000 20000 17000 21500 Σ HYDROCARBURES MONOTERPENIQUES 910 2800 1900 1900 1877,5 CAMPHRE 81 700 330 470 395,25 CARVOMENTHONE <5						
Σ HYDROCARBURES MONOTERPENIQUES 910 2800 1900 1900 1877,5 CAMPHRE 81 700 330 470 395,25 CARVOMENTHONE <5 <5 <5 <5 n.d. SANTENE 26 66 49 44 46,25 TERPINOLENE 440 1400 920 930 922,5 FENCHONE 71 370 260 330 257,75 Somme des HMT (μg/Nm³) 29168 146616 78149 75884						
CAMPHRE 81 700 330 470 395,25 CARVOMENTHONE <5						
CARVOMENTHONE <5 <5 <5 n.d. SANTENE 26 66 49 44 46,25 TERPINOLENE 440 1400 920 930 922,5 FENCHONE 71 370 260 330 257,75 Somme des HMT (μg/Nm³) 29168 146616 78149 75884	_					
SANTENE 26 66 49 44 46,25 TERPINOLENE 440 1400 920 930 922,5 FENCHONE 71 370 260 330 257,75 Somme des HMT (μg/Nm³) 29168 146616 78149 75884						
TERPINOLENE 440 1400 920 930 922,5 FENCHONE 71 370 260 330 257,75 Somme des HMT (μg/Nm³) 29168 146616 78149 75884						
FENCHONE 71 370 260 330 257,75 Somme des HMT (μg/Nm³) 29168 146616 78149 75884						· · · · · · · · · · · · · · · · · · ·
Somme des HMT (µg/Nm³) 29168 146616 78149 75884						
						,
Somme des HMT (mg/Nm ²) 29,2 146,6 78,1 75,9	Somme des HMT (mg/Nm³)	29,2	146,6	78,1	75,9	

Esters (µg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
ACIDE ACETIQUE, METHYL ESTER	<10	<10	<10	<10	n.d.
ACIDE ACETIQUE, ETHYL ESTER	<10	<10	<10	<10	n.d.
ACIDE ACETIQUE, ISOPROPYL ESTER	<10	<10	<10	<10	n.d.
ACIDE ACETIQUE, PROPYL ESTER	<10	<10	<10	<10	n.d.
ACIDE ACETIQUE, ISOBUTYL ESTER	<10	<10	<10	<10	n.d.
ACIDE ACETIQUE, sec-BUTYL ESTER	<10	<10	<10	<10	n.d.
ACIDE ACETIQUE, BUTYL ESTER	<10	<10	<10	<10	n.d.
ACIDE PROPANOIQUE, METHYL ESTER	<10	<10	<10	<10	n.d.
ACIDE PROPANOIQUE, ETHYL ESTER	<10	<10	<10	<10	n.d.
ACIDE PROPANOIQUE, ISOPROPYL ESTER	<10	<10	<10	<10	n.d.
ACIDE PROPANOIQUE, PROPYL ESTER	<10	<10	<10	<10	n.d.
ACIDE PROPANOIQUE, BUTYL ESTER	<10	<10	<10	<10	n.d.
ACIDE ISOBUTANOIQUE, METHYL ESTER	<10	<10	<10	<10	n.d.
ACIDE BUTANOIQUE, METHYL ESTER	<10	<10	<10	<10	n.d.
ACIDE BUTANOIQUE, METITE ESTER ACIDE BUTANOIQUE, ETHYL ESTER	<10	<10	<10	<10	n.d. n.d.
ACIDE BUTANOIQUE, ETITE ESTER ACIDE BUTANOIQUE, ISOPROPYL ESTER	<10	<10	<10	<10	n.d. n.d.
ACIDE BOTANOIQUE, ISOFROT TE ESTER ACIDE PROPANOIQUE, 2-METHYL PROPYL ES'		<10	<10	<10	n.d. n.d.
ACIDE BUTANOIQUE, 2-METHTL PROPTL ES ACIDE BUTANOIQUE, PROPYL ESTER	<10	<10	<10	<10	n.a. n.d.
	<10			<10	
ACIDE BUTANOIQUE, ISOBUTYL ESTER		<10	<10		n.d.
ACIDE BUTANOIQUE, BUTYL ESTER	<10	<10	<10	<10	n.d.
ACIDE ALPHA-METHYLBUTANOIQUE, METHY		<10	<10	<10	n.d.
ACIDE ISOBUTANOIQUE, ETHYL ESTER	<10	<10	<10	<10	n.d.
ACIDE PENTANOIQUE, METHYL ESTER	<10	<10	<10	<10	n.d.
ACIDE PENTANOIQUE, ETHYL ESTER	<10	<10	<10	<10	n.d.
ACIDE HEXANOIQUE, METHYL ESTER	<10	<10	<10	<10	n.d.
ACIDE HEXANOIQUE, ETHYL ESTER	<10	<10	<10	<10	n.d.
ACIDE HEXANOIQUE, PROPYL ESTER	<10	<10	<10	<10	n.d.
ACIDE HEXANOIQUE, ISOBUTYL ESTER	<10	<10	<10	<10	n.d.
ACIDE HEXANOIQUE, BUTYL ESTER	<10	<10	<10	<10	n.d.
Somme des esters (µg/Nm³)	n.d.	n.d.	n.d.	n.d.	N/
Ethers (µg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
METHANE, 1,1'-OXYBIS	450	1600	840	890	945
FURANE 1 11 OXXVDIS	72	360	160	190	196
ETHANE, 1,1'-OXYBIS	300	650	560	580	523 265
METHANE, DIMETHOXY	250	510	330	370	365 2805
Σ FURANES, METHYL	380	7500	2000	1700	2895
METHYL TERT-BUTYL ETHER	60	110	89	100	90
TETRAHYDROFURANE	490	2300	1100	1400	1323
FURANE, ETHYL	130	2300	630	650	928
FURANE, DIMETHYL	770	8700	3200	2900	3893
1,4-DIOXANE	<5	38	19	23	27
FURANE, TRIMETHYL	24	190	95	79	97 127
1,3-DIOXOLANE	57	210	100	140	127
PROPANE, 2-ETHOXY-2-METHYL	13	77	45	44	45
Somme des éthers (µg/Nm³)	2996	24545	9168	9066	
Somme des éthers (mg/Nm³)	3,0	24,5	9,2	9,1	3.4
Organométalliques (μg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
TRIMETHYL ARSINE	<5	<5	<5 22	<5 22	n.d.
TETRAMETHYL STANNANE	17	46	33	32	32
TRIMETHYL STIBINE	<5	<5 .5	<5	<5	n.d.
TRIMETHYL BISMUTHINE	<5 17	<5	<5	<5 22	n.d.
Somme des éthers (µg/Nm³)	17	46	33	32	

Silanes et Siloxanes (µg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
SILANOL, TRIMETHYL	840	4600	2500	-	2647
DISILOXANE, HEXAMETHYL	290	1200	690	690	718
TRISILOXANE, OCTAMETHYL	27	140	80	79	82
CYCLOTRISILOXANE, HEXAMETHYL	150	460	220	240	268
CYCLOTETRASILOXANE, OCTAMETHYL	1900	8200	5100	4500	4925
CYCLOPENTASILOXANE, DECAMETHYL	<5	3300	1800	2600	1926
TETRASILOXANE, DECAMETHYL	<5	<5	<5	<5	n.d.
PENTASILOXANE, DODECAMETHYL	<5	<5	<5	<5	n.d.
SILANE, TETRAMETHYL	<5	<5	<5	<5	n.d.
SILANE, ETHOXYTRIMETHYL	<5	<5	<5	<5	n.d.
SILANE, ISOPROPOXYTRIMETHYL	<5	<5	<5	<5	n.d.
SILANE, PROPOXYTRIMETHYL	<5	<5	<5	<5	n.d.
SILANE, sec-BUTOXYTRIMETHYL	<5	<5	<5	<5	n.d.
SILANE, BUTOXYTRIMETHYL	<5	<5	<5	<5	n.d.
DISILANE, HEXAMETHYL	<5	<5	<5	<5	n.d.
SILANE, METHYLENEBIS (TRIMETHYL)	<5	<5	<5	<5	n.d.
DIOXATRISILANE, HEXAMETHYL	<5	<5	<5	<5	n.d.
TRIOXATETRASILOCANE, OCTAMETHYL	<5	<5	<5	<5	n.d.
DIOXATETRASILOCANE, OCTAMETHYL	<5	<5	<5	<5	n.d.
THIATRISILANE, HEXAMETHYL	<5	<5	<5	<5	n.d.
Somme des éthers (µg/Nm³)	0	0	0	0	
Somme des éthers (mg/Nm³)	0,0	0,0	0,0	0,0	
Azotés (μg/Nm³)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
PROPANENITRILE	<10	<10	<10	<10	n.d.
1H-PYRROLE, METHYL	<10	<10	<10	<10	n.d.
PYRIDINE	< 20	< 20	< 20	<20	n.d.
Somme desdérivés azotés (µg/Nm³)	n.d.	n.d.	n.d.	n.d.	
Analytes (Equivalents)	6/12/2010	14/06/2011	12/12/2011	27/06/2012	Moyenne
SOUFRE TOTAL (mg S/Nm³)	1300	4500	2300	1200	2325
SOUFRE (mg H2SO4/Nm³)	4100	14000	7000	3800	7225
CHLORE TOTAL (mg Cl/Nm³)	2,4	4,7	3,3	3,6	3,5
FLUOR TOTAL (mg F/Nm³)	1,4	2,6	2,2	2,2	2,1
SILICIUM TOTAL (mg Si/Nm³)	1,2	6,4	3,7	4,1	3,85
EQUIVALENT SILICE(mg SiO2/Nm³)	2,5	14	8	8,8	8,325

Autocontrôles des fumées du moteur

C.E.T. de Chapois

Laboratoire : Vinçotte

Fréquence d'analyse : Annuelle

Période d'analyses : Juin 2011 et juin 2012

Eléments majeurs				
Paramètres	Unités	14/06/2011	27/06/2012	Moyenne
Oxygène	%vol (gaz sec)	6,3	6,3	6,3
Dioxyde de carbone	%vol (gaz sec)	12	12,1	12,05
Monoxyde de carbone	mg/m³ (gaz sec)	673	793	733
Dioxyde de soufre	mg SO2/m³ (gaz sec)	<23	<23	n.d.
Oxydes d'azote	mg NO2/m³ (gaz sec)	405	207	306
Azote	%vol (gaz sec)	81,7	81,5	81,6

COV				
Paramètres	Unités	14/06/2011	27/06/2012	Moyenne
Benzène	μg/m³ (gaz sec)	60	31	45,5
Toluène	μg/m³ (gaz sec)	30	40	35
Chlorure de vinyle	μg/m³ (gaz sec)	<10	<15	n.d.
Autres COV*	μg/m³ (gaz sec)	< l.d.	< 1.d.	n.d.

^{*} Limite de détection : 500 µg/Nm³

Annexe 2 : Rapport de prélèvement : Campagne de mesure des émissions surfaciques et des flux au C.E.T. de Happe-Chapois 9 pages

Siège social et site de Liège : Rue du Chéra, 200 B-4000 Liège

Tél: +32(0)4.229.83.11 Fax: +32(0)4.252.46.65 Site web: http://www.issep.be Site de Colfontaine : Zoning A. Schweitzer Rue de la Platinerie B-7340 Colfontaine Tél : +32(0)65.61.08.11 Fax : +32(0)65.61.08.08

Liège, le 3 décembre 2012

Département de la Police et des Contrôles (DGO3)

Campagne de mesures des émissions surfaciques et des flux au C.E.T. de Happe-Chapois

- Rapport n°2962/2012 -

Dates des mesures: les 22 et 23 août 2012

Adresse complète	Lieux-dit « Trou de Happe », rue de Rochefort à 5590 Chapois
Visite et mesures effectuées par	Jean-Luc Blehen, Gradué, Cellule Déchets et Sites à risques Danielle Dosquet, Attachée, Cellule Déchets et Sites à risques Nicolas Fernemont, Gradué, Cellule Déchets et Sites à risques Simon Garzaniti, Attaché, Cellule Déchets et Sites à risques Emerance Bietlot, Attachée, Cellule Déchets et Sites à risques
Sous la supervision de	Emerance Bietlot, Attachée, Cellule Déchets et Sites à risques
A la demande de	SPW – Département de la Police et des Contrôles (DPC)
Propriétaire du site	BEP Environnement
Contexte de la visite	DPC – Réseau de contrôle des C.E.T.
Accompagnants	-
Auteur	Simon Garzaniti, Attaché, Cellule Déchets et Sites à risques

Ce document comporte 9 pages, 1 plan et 1 annexe :

Plan 1 : Localisation des points de mesures effectuées

Annexe 1 : Synthèse des données de mesure de flux - Ecoprobe + Inspectra (2 pages)

1 CONTEXTE

Dans le cadre de la mission de contrôle des C.E.T. qui lui a été confiée par le DPC, l'ISSeP réalise régulièrement des mesures d'émissions surfaciques de biogaz sur les C.E.T. Afin d'améliorer sa méthodologie de caractérisation des flux de biogaz, l'Institut a fait appel à des experts en la matière : l'INERIS (Institut National de l'EnviRonnement industriel et des rISques) pour les mesures de flux et Ephésia pour la géostatistique.

Cette collaboration a débouché sur la mise au point d'une stratégie appliquée pour l'étude des flux de biogaz, inspirée de l'UK-EA¹. Celle-ci se déroule en trois phases successives et complémentaires décrites dans la fiche technique « CET-air02-méthodes » disponible sur le site internet du Réseau de contrôle des C.E.T.

(http://environnement.wallonie.be/data/dechets/cet/index.html).

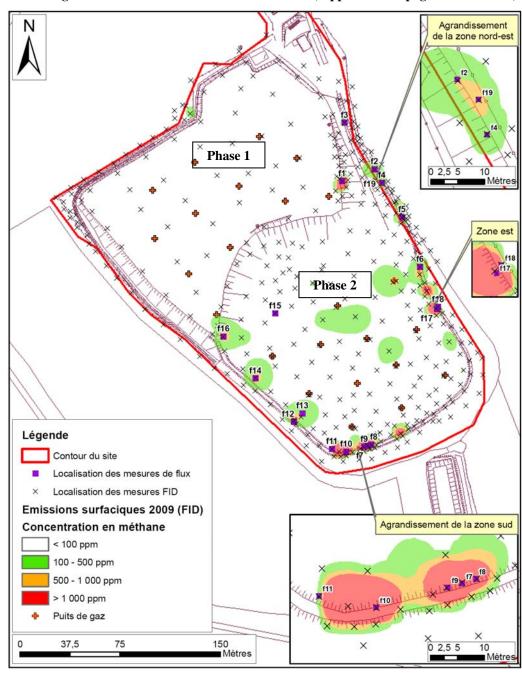
Pour rappel, elles se distinguent comme suit :

Phase I : Phase préparatoire

• Phase II : Stratégie d'échantillonnage

• Phase III : Mesures des flux

¹ UK-Environmental Agency, 2004. Guidance on monitoring landfill gas surface emissions. EA guidelines_TGN07_Monitoring LFG surface emissions.pdf. Disponible sur: http://www.environment-agency.gov.uk/


2 PHASE I : PHASE PRÉPARATOIRE

2.1 Données historiques

La Figure 1 ci-dessous synthétise les diverses informations historiques qui sont à disposition de l'ISSeP :

- L'allure générale du site avec le découpage en phases d'exploitation successives. La partie au nord du talus (phase 1) est la plus ancienne et a fait l'objet d'une réhabilitation en 2000. La partie sud (phase 2) a fait l'objet d'une réhabilitation dans le courant de 2012;
- Les zones émissives mises en évidence lors de la dernière campagne de contrôle de 2009 (CH₄>500ppm)

Figure 1 : Plan du site et zones émissives 2009 (rapport de campagne n°2986/2009)

2.2 Données récoltées lors de la campagne

Aux informations historiques, s'ajoutent celles récoltées lors de la campagne 2012 :

- Toute activité de mise en décharge a définitivement cessé.
- La phase 2, au sud du C.E.T., a fait l'objet d'une réhabilitation, conformément aux prescriptions de l'arrêté de réhabilitation délivré à BEP environnement (AGW du 17/06/2010). Une couche de terre recouvre donc le dôme, partiellement enherbé.
- La végétation est plus développée au droit de la zone anciennement réhabilitée, phase 1 au nord, que dans la zone sud.
- Un réseau de puits de gaz dense est implanté sur le site et est relié à un moteur en activité lors de la campagne 2012.
- Une jauge Owen de mesure de poussières sédimentables est présente sur le dôme.
- Un dispositif d'analyse de la qualité de l'air ambiant est présent au droit du local technique.
- Deux filtres à charbon actif ont été installés en amont des unités de valorisation du biogaz afin de diminuer la teneur en H₂S du gaz pompé.

Les photos de la Figure 2 donnent un aperçu de l'allure du site et des installations opérationnelles au moment de la campagne.

Figure 2 : Vue du C.E.T. et unité d'analyse de l'air ambiant

Dispositif de prélèvement de l'air ambiant à l'arrière du local technique

Unité d'analyse de l'air ambiant (mesure en continu du méthane)

3 PHASE II : STRATÉGIE D'ÉCHANTILLONNAGE

Suite à l'acquisition par la cellule « Déchets et Sites à risques » d'un nouvel analyseur du méthane dans l'air (Inspectra laser®), la stratégie d'investigation habituelle (voir fiche technique "CET-air02-méthodes") a été modifiée afin d'intégrer ce nouvel appareil dans le protocole d'investigation et d'en exploiter ses atouts.

Ce nouvel analyseur est particulièrement adapté aux mesures d'émissions surfaciques sur des dômes réhabilités en raison de sa limite de détection très basse qui permet de quantifier des concentrations et des flux faibles en méthane. Toutefois, en raison des spécificités techniques de l'appareil (voir fiche technique "CET-air02-méthodes"), celui-ci ne peut pas remplacer purement et simplement l'Ecoprobe utilisé jusque-là par la cellule. En effet, contrairement à l'Ecoprobe, l'Inspectra laser ne mesure ni le CO₂ ni les TP (total petroleum). Les deux appareils sont donc couplés sur la chambre de flux Ineris en vue de réaliser des mesures en parallèle. Par ailleurs, contrairement aux campagnes classiques, aucune mesure de concentration à la cloche Odotech n'est réalisée, seule la chambre de flux Ineris est utilisée.

Le protocole utilisé ici a pour objectifs :

- de pouvoir comparer les réponses respectives des deux appareils,
- d'évaluer de façon rigoureuse les émissions surfaciques du site,
- de permettre une comparaison entre les campagnes successives réalisées sur le site de Chapois.

Par ailleurs, la campagne de mesure d'aout 2012 au C.E.T. de Happe-Chapois (objet du présent rapport) fait office de campagne test en vue de modifier les stratégies d'investigation des dômes réhabilités (moins émissifs) voire de tous les C.E.T. du réseau de contrôle. Les modifications apportées à la stratégie globale d'investigation seront reprises dans un document de référence qui paraitra aux termes des phases tests que sont les essais en laboratoire, la campagne de Happe-Chapois visée par le présent rapport et la campagne de Mont-Saint-Guibert (finalisée en octobre 2012).

3.1 Mode opératoire

Pour la réalisation du plan d'échantillonnage, la méthodologie suivante a été adoptée :

- Visite du site et prise de mesure GPS pour délimiter des zones homogènes (topographie, couverture, activité, ...) au sein du site ;
- Délimitation de zones homogènes à l'aide d'un programme de cartographie (Arcgis) et distinction de deux types de zones :
 - Les zones mises en évidence lors de la visite du site et localisées grâce aux mesures GPS ;
 - Les zones émissives mises en évidence lors de la dernière campagne en date (CH₄ > 500ppm)
- Détermination du nombre de points (mesures de concentrations et de flux) à implanter dans chaque zone selon le protocole établi dans le document de référence² (la densité de points à implanter est d'autant plus élevée que la taille de la zone est petite);
- Génération de cartes avec répartition aléatoire des points de mesure au sein des différentes zones à l'aide d'un logiciel cartographique.

² "Détermination d'un protocole d'échantillonnage et d'une méthodologie d'estimation et de cartographie des flux de biogaz et application au C.E.T. de Mont-Saint-Guibert" Kidova-Ephésia (décembre 2009)

Si la génération aléatoire des points laisse de trop grandes zones non investiguées, des points sont déplacés ou ajoutés manuellement afin que l'ensemble du site soit investigué.

A Chapois en 2012, vu les modifications apportées au site depuis la dernière campagne (réhabilitation de la phase 2), les anciennes zones émissives n'ont pas été prises en compte et le dôme a été considéré comme une seule zone homogène.

3.2 Plan d'échantillonnage

Etant donné qu'aucune mesure de concentration à la cloche Odotech n'est prévue à Chapois, le nombre de points de mesure de flux a été déterminé non pas par le document de référence de Kidova-Ephésia mais par les prescriptions de l'UK-EA¹. Ainsi, pour une seule zone homogène de 5,5 ha environ (le dôme dans son entièreté), le plan d'échantillonnage prévoit 35 points de mesure de flux répartis aléatoirement sur le site.

La répartition des points sur l'unique zone considérée est donnée à la Figure 3.

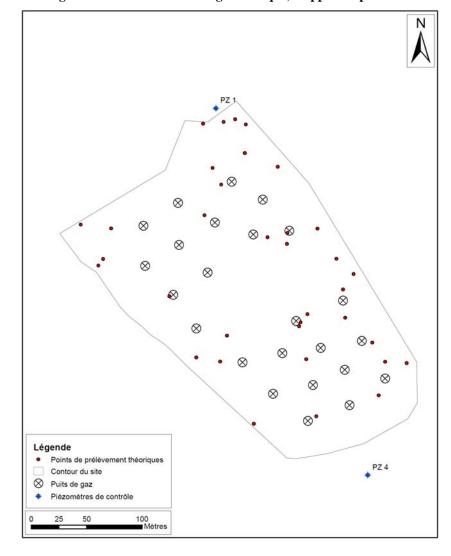


Figure 3: Plan d'échantillonage théorique, Happe-Chapois 2012

4 PHASE III : MESURES DE FLUX

Les mesures sur site ont été réalisées les 22 et 23 août 2012. Une journée complémentaire a été organisée le 29 août 2012 afin d'augmenter le nombre de points de mesures dans les zones plus émissives mises en évidence lors de la campagne.

4.1 Mode opératoire

Pour la prise de mesure de flux, la méthodologie suivante a été adoptée :

- A l'aide d'un GPS de grande précision, les points théoriques implantés aléatoirement sont localisés sur le site afin d'y effectuer une mesure de flux. Lorsque l'emplacement d'un point théorique ne permet pas la prise de mesure (trop de végétation, couverture étanche, passage de camions, ...), celle-ci est réalisée dans ses environs immédiats.
- La mesure de flux à proprement parlé est ensuite réalisée au moyen de la chambre de flux à laquelle sont connectés les deux analyseurs (Ecoprobe et Inspectra laser) par deux systèmes distincts de tuyauteries (voir point 4.2).
- En plus des points préconisés par le plan d'échantillonnage, tous les puits de dégazage, qui constituent généralement des zones de faiblesse et donc de dégazage préférentiel, font l'objet d'une mesure au sol, dans un rayon de moins d'un mètre du tubage (zone de l'annulaire du puits).
- Eventuellement, des points de mesures supplémentaires peuvent être ajoutés en fin de campagne dans des zones émissives jugées insuffisamment investiguée.

4.2 Appareils de mesures

Les mesures de flux sont réalisées à l'aide de la chambre de flux Ineris sur laquelle sont connectés, en parallèle :

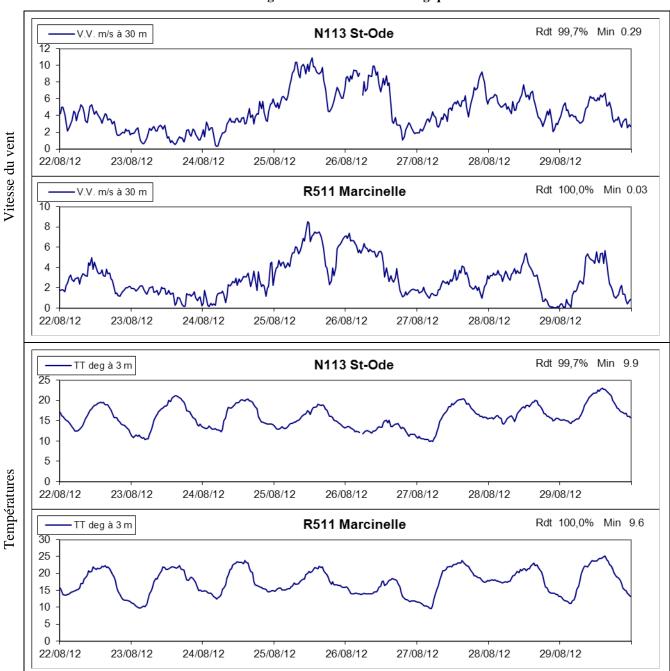
- L'Ecoprobe (détection par infrarouge) pour les mesures du CH₄, CO₂ et Total Petroleum (TP):
- L'Inspectra laser (détection par technologie laser) pour la mesure du CH₄.

Ces deux appareils disposent chacun d'une pompe intégrée qui prélève et réinjecte l'air dans la chambre de flux une fois celui-ci analysé. Les deux analyseurs sont qualifiés de non destructifs en ce sens que toutes les substances analysées sont réintroduites dans le système, sans modification de leur nature. Ce montage permet de réaliser des mesures distinctes qui sont des doublons parfaits.

Un descriptif détaillé de ces deux appareils et des procédures d'acquisition de données est fourni dans une note interne à l'ISSeP qui paraitra au terme des phases tests. Ce document peut être délivré au lecteur sur demande à la cellule « Déchets et Site à risques » de l'ISSeP.

4.3 Données météorologiques

Pour des raisons techniques, la mesure des données météorologiques n'a pu être effectuée lors de cette campagne.


Les 3 journées de mesures étaient marquées par un temps chaud, sec et très stable.

Les données météorologiques mesurées au niveau des 2 stations météo les plus proches du site (St Ode à 37 km-SE et Marcinelle à 52 km-O) durant la période d'échantillonnage sont présentées sous forme de graphiques à la Figure 4.

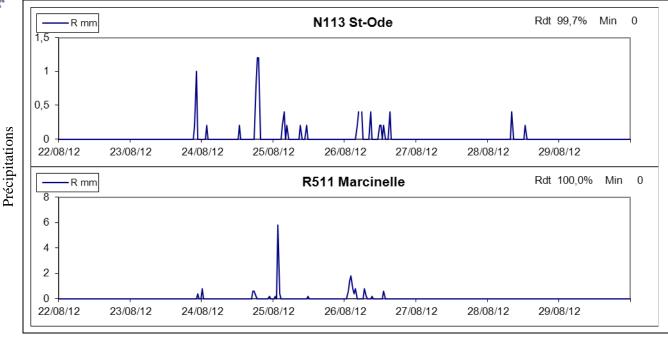

Pour résumer, les 22, 23 et 29 août, le vent était faible, les températures moyennes et les précipitations nulles au niveau des stations météo et du C.E.T. de Happe-Chapois.

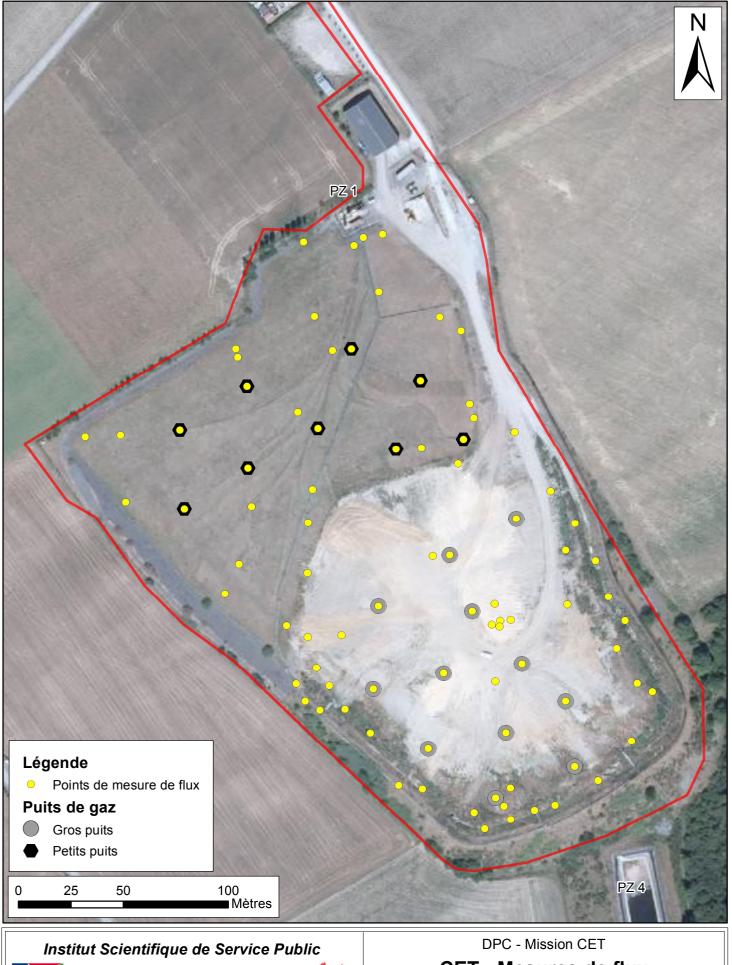
Figure 4 : Données météorologique

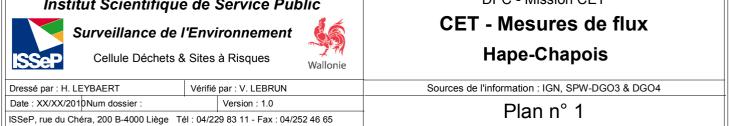
4.4 Résultats

Au total, 83 mesures de flux au moyen de l'Ecoprobe et de l'Inspectra laser connectés à la chambre Ineris ont été réalisées sur le dôme et autour des puits de gaz.

Les valeurs maximales enregistrées pour le CH₄, le CO₂ et les TP par l'Ecoprobe et le CH₄ par l'Inspectra sont fournies en Annexe 1. La localisation des points de mesures est indiquée sur le Plan 1. Le Tableau 1 détaille le nombre de mesures effectuées lors de chaque journée de la campagne.

Tableau 1 : Détail du nombre de mesures effectuées


	Cod	es échantillons	Nombre de	Nombre de
Date	X	Y1 à Yxx	mesure à la cloche Odotech	mesure de flux
22/08/2012	X01	Y01 à Y35	0	35
23/08/2012	X02	Y01 à Y32	0	32
29/08/2012	X03	Y01 à Y16	0	16


S. Garzaniti Attaché, Cellule Déchets et sites à risques E. Bietlot Attachée, Cellule Déchets et sites à risques

Plan

Plan 1 : Localisation des points de mesures effectuées

Annexe

Annexe 1 : Synthèse des données de mesure de flux - Ecoprobe + Inspectra (2 pages)

(Total 2 pages)

Annexe 1 : Synthèse de données de flux – Ecoprobe

		Ecoprobe		Inspectra			
Point	CH4max (ppm)	CO2 max	TP max	CH4max (ppm)	X (m)	Y (m)	Z (m)
x1y1	0	625,0416	0	1,4	205591,116	104950,149	304,494
x1y2	0	523,4393	0	1,8	205541,305	104932,122	303,462
x1y3	0	568,0398	0	1,8	205509,333	104911,457	302,25
x1y4	0	566,4167	0	1,8	205511,553	104873,657	299,951
x1y5	0	470,1231	0	1,9	205541,829	104893,146	302,771
x1y6	0	507,2419	0	1,7	205575,164	104912,286	304,752
x1y7	0	506,3674	0	1,2	205623,901	104934,717	301,216
x1y8	0	511,7004	0	2,0	205644,428	104907,04	297,719
x1y9	0	538,9456	0	1,4	205612,29	104902,229	302,396
x1y10	0	469,5417	0	1,4	205570,472	104866,943	301,376
x1y11	0	479,5296	0	1,5	205537,53	104847,135	297,819
x1y12	0	758,5078	0	1,7	205560,115	104817,793	294,202
x1y13	0	440,6945	0	1,7	205603,986	104827,152	296,894
x1y14	0	456,377	0	1,5	205637,893	104851,619	299,276
x1y15	0	443,6762	0	1,7	205669,525	104868,851	296,085
x1y16	0	529,8276	0	1,6	205693,149	104781,751	290,937
x1y17	0	430,4181	0	1,8	205648,636	104824,719	297,512
x1y18	0	431,642	0	1,9	205635,004	104795,006	294,406
x1y19	0	429,0488	0	1,6	205601,483	104787,434	290,628
x1y20	0	459,4362	0	2,8	205627,702	104759,104	287,371
x1y21	454	1124,2072	497	538,9	205659,829	104735,435	285,4
x1y22	0	523,0725	0	3,4	205697,426	104750,49	284,527
x1y23	0	502,8545	0	2,3	205672,378	104799,661	294,673
x1y24	0	481,7579	0	2,2	205664,735	104766,652	290,937
x1y25	0	492,9548	0	2,5	205605,901	105004,807	300,192
x1y26	0	510,4446	0	1,9	205604,047	104977,528	302,172
x1y27	0	471,7856	0	2,1	205633,213	104965,335	299,916
x1y28	0	460,5523	0	2,2	205573,479	104965,624	303,452
x1y29	0	457,6653	0	2,2	205536,014	104950,241	302,735
x1y30	0	443,3125	0	1,9	205536,931	104946,23	302,946
x1y31	0	421,8316	0	1,8	205565,51	104919,92	304,67
x1y32	0	455,6526	0	1,9	205481,041	104909,002	302,636
x1y33	0	414,1961	0	2,4	205464,226	104908,277	303,038
x1y34	0	445,8737	0	2,6	205483,438	104876,916	300,172
x1y35	0	468,0569	0	2,6	205530,729	104833,159	296,292
x2y01	0	535,6269	0	1,3	205596,744	105003,232	301,114
x2y02	0	510,2159	0	1,1	205592,281	104999,474	301,5
x2y03	0	501,7831	0	1,4	205568,214	105001,065	300,892
x2y04	0	447,3605	0	1,7	205582,031	104949,379	304,643
x2y05	0	461,6547	0	1,8	205570,087	104843,028	297,397
x2y06	0	430,7124	0	2,5	205586,351	104813,268	293,959
x2y07	0	460,5155	0	2,8	205564,791	104789,95	288,508

x2y08	0	420,352	0	2,3	205580,551	104789,034	288,738
x2y09	0	836,2062	0	30,1	205576,107	104777,345	286,166
x2y10	0	734,9752	0	4,6	205568,978	104781,754	286,455
x2y11	0	465,8966	0	1,9	205613,611	104741,499	281,741
x2y12	0	471,1619	0	6,3	205666,726	104740,269	286,327
x2y13	0	790,5488	0	4,0	205663,748	104731,454	284,065
x2y14	0	427,4821	0	2,5	205649,444	104728,392	282,917
x2y15	0	420,6276	0	1,9	205659,584	104791,018	294,514
x2y16	0	420,9164	0	2,7	205657,851	104818,303	296,61
x2y17	724	874,6373	517	356,9	205661,919	104820,115	296,522
x2y18	0	436,3092	0	1,8	205629,827	104851,148	299,645
x2y19	0	573,2115	0	2,6	205641,795	104895,279	297,81
x2y20	0	448,1568	0	5,1	205624,469	104902,71	300,813
x2y21	0	472,2631	0	4,6	205668,842	104910,457	293,975
x2y22	0	426,7023	0	1,8	205685,925	104882,035	293,051
x2y23	0	784,1962	0	14,0	205697,616	104866,571	289,601
x2y24	0	443,8373	0	2,1	205693,194	104853,983	291,801
x2y25	0	414,818	0	1,6	205693,825	104827,958	292,981
x2y26	0	477,9552	0	2,5	205717,497	104806,874	287,637
x2y27	0	512,6854	0	2,4	205727,309	104790,07	286,109
x2y28	0	469,0305	0	2,0	205734,376	104786,111	284,237
x2y29	0	432,7874	0	2,2	205724,427	104762,749	283,59
x2y30	0	549,2299	39	207,3	205661,568	104817,391	296,409
x2y31	0	596,0044	0	4,9	205666,884	104820,613	296,23
x2y32	0	400,0637	0	2,4	205659,26	104828,181	297,023
x3y01	0	573,0724	0	1,7	205643,232	104958,781	298,472
x3y02	0	523,681	0	1,8	205707,43	104848,835	287,588
x3y03	0	679,9403	0	2,3	205713,429	104831,685	286,543
x3y04	0	529,6012	0	2,2	205721,479	104820,209	285,311
x3y05	117	916,9579	7	3,0	205708,567	104743,751	281,359
x3y06	0	494,4496	0	1,9	205688,017	104732,03	281,9
x3y07	0	938,1005	0	6,3	205678,303	104729,488	282,066
x3y08	0	508,2963	7	2,4	205667,025	104725,07	281,903
x3y09	0	480,3167	0	1,6	205654,528	104720,687	281,399
x3y10	0	642,3044	0	1,5	205624,88	104739,776	282,069
x3y11	0	531,7755	0	2,2	205600,103	104766,595	285,463
x3y12	0	442,44	0	2,1	205587,948	104777,828	286,904
x3y13	0	415,2207	0	2,2	205574,379	104797,671	290,275
x3y14	0	411,115	0	2,5	205570,232	104812,315	293,04
x3y15	0	449,5131	17	2,7	205649,433	104917,112	297,366
x3y16	80	407,2899	3	2,1	205647,394	104923,717	298,099

Annexe 3 : Données d'autocontrôle des émissions surfaciques — 3^{ème} trimestre 2012 — Mesures SPAQuE (Source BEP Environnement) 2 pages

C.E.T. de Chapois Mesure des émissions surfaciques - Campagne d'autocontrôle du 3ème trimestre 2012 (Mesures effectuées par SPAQuE)

Point 1	X (m)	es Lambert Y	FID max	Commentaires
	(m)			
	·	(m)	(ppm)	
	205.592	105.027	0	point de référence (piézomètre)
2	205.582	105.010	0	drain
3	205.566	105.002	0	drain
4	205.551	104.993	0	drain
5	205.546	104.976	0	drain
6 7	205.535	104.963	1	drain
8	205.520 205.503	104.953 104.944	0	drain drain
9	205.303	104.944	0	drain
10	205.473	104.926	0	drain
11	205.460	104.917	0	végétation (hautes herbes)
12	205.446	104.904	0	végétation (hautes herbes)
13	205.456	104.888	0	végétation (hautes herbes)
14	205.472	104.896	0	végétation (hautes herbes)
15	205.487	104.909	0	végétation (hautes herbes)
16	205.503	104.923	0	végétation (hautes herbes)
17	205.524	104.929	0	végétation (hautes herbes)
18	205.541	104.937	0	végétation (hautes herbes)
19	205.556	104.950	0	végétation (hautes herbes)
20	205.566	104.966	0	végétation (hautes herbes)
21	205.577	104.985	0	végétation (hautes herbes)
22	205.594	104.992	0	végétation (hautes herbes)
23	205.613	105.001	0	végétation (hautes herbes)
24	205.624	104.988	0	végétation (hautes herbes)
25	205.610	104.974	0	végétation (hautes herbes)
26	205.591	104.965	0	végétation (hautes herbes)
27	205.576	104.953	0	végétation (hautes herbes)
28	205.559	104.944	0	végétation (hautes herbes)
29	205.543	104.933	0	végétation (hautes herbes)
30	205.529	104.921	0	végétation (hautes herbes)
31	205.512	104.910	0	végétation (hautes herbes)
32 33	205.495	104.900	0	végétation (hautes herbes) drain
34	205.478 205.463	104.890 104.880	0	végétation (hautes herbes)
35	205.463	104.860	0	végétation (hautes herbes)
36	205.495	104.873	0	végétation (hautes herbes)
37	205.512	104.884	0	végétation (hautes herbes)
38	205.527	104.897	0	végétation (hautes herbes)
39	205.543	104.908	0	végétation (hautes herbes)
40	205.560	104.917	0	végétation (hautes herbes)
41	205.576	104.929	0	végétation (hautes herbes)
42	205.591	104.939	0	 végétation (hautes herbes)
43	205.608	104.955	1	végétation (hautes herbes)
44	205.625	104.961	1	végétation (hautes herbes)
45	205.640	104.971	2	végétation (hautes herbes)
46	205.644	104.952	2	végétation (hautes herbes)
47	205.626	104.944	1	végétation (hautes herbes)
48	205.608	104.939	1	végétation (hautes herbes)
49	205.590	104.928	1	végétation (hautes herbes)
50	205.573	104.917	1	végétation (hautes herbes)
51	205.557	104.905	1	végétation (hautes herbes)
52	205.538	104.897	1	végétation (hautes herbes)
53	205.524	104.881	1	végétation (hautes herbes)
54 55	205.510	104.870	0	empierrement
55 56	205.496	104.854	1	végétation (hautes herbes)
56 57	205.510	104.839	1	végétation (hautes herbes)
57 58	205.527 205.546	104.848 104.864	0	végétation (hautes herbes)
58	205.546	104.864	0	végétation (hautes herbes) végétation (hautes herbes)
60	205.579	104.896	0	végétation (hautes herbes)
61	205.608	104.913	0	végétation (hautes herbes)
62	205.627	104.917	0	végétation (hautes herbes)
63	205.644	104.924	2	terre
64	205.659	104.931	2	végétation (hautes herbes)
65	205.673	104.919	0	végétation (hautes herbes)
66	205.655	104.915	0	végétation (hautes herbes)
67	205.636	104.907	0	végétation (hautes herbes)
68	205.617	104.900	0	végétation (hautes herbes)
69	205.599	104.889	0	végétation (hautes herbes)
70	205.583	104.882	2	végétation (hautes herbes)
71	205.568	104.867	0	végétation (hautes herbes)
72	205.552	104.857	0	végétation (hautes herbes)
73	205.537	104.845	0	empierrement
74	205.524	104.827	0	végétation (hautes herbes)
	20E E 40	104.812	0	végétation (hautes herbes)
75	205.540	104.012	0	rogotation (nautoo norboo)

C.E.T. de Chapois Mesure des émissions surfaciques - Campagne d'autocontrôle du 3ème trimestre 2012 (Mesures effectuées par SPAQuE)

 	Coordonné	es Lambert	rectuees par	T,
Point	X	Υ	max	Commentaires
	(m)	(m)	(ppm)	
77	205.571	104.844	0	terre
78	205.589	104.857	0	terre
79	205.603	104.870	1	terre
80	205.623	104.873	0	terre
81	205.642	104.880	0	terre
82	205.660	104.884	0	terre
83	205.678	104.887	0	terre
84 85	205.685 205.669	104.869 104.865	0	terre terre
86	205.649	104.857	0	terre
87	205.631	104.847	0	terre
88	205.614	104.838	0	terre
89	205.599	104.826	0	terre
90	205.584	104.810	0	terre
91	205.572	104.798	76	végétation (hautes herbes)
92	205.564	104.783	0	végétation (hautes herbes)
93	205.580	104.768	0	végétation (hautes herbes)
94	205.594	104.787	0	végétation (hautes herbes)
95	205.606	104.803	0	végétation (hautes herbes)
96 97	205.622 205.632	104.817 104.829	0	terre terre
98	205.650	104.829	0	terre
99	205.666	104.850	0	végétation (hautes herbes)
100	205.683	104.855	0	végétation (hautes herbes)
101	205.691	104.839	0	terre
102	205.685	104.825	0	terre
103	205.667	104.817	0	terre
104	205.651	104.806	0	
105	205.636	104.793	0	terre terre végétation (hautes herbes) végétation (hautes herbes) terre terre terre terre terre terre terre végétation (hautes herbes)
106	205.628	104.778	0	terre
107	205.609	104.771	1	végétation (hautes herbes)
108 109	205.597 205.612	104.755 104.741	3 2	végétation (hautes herbes)
110	205.622	104.741	0	terre terre
111	205.634	104.769	0	terre
112	205.650	104.785	0	terre
113	205.664	104.797	0	terre
114	205.680	104.807	0	végétation (hautes herbes)
115	205.694	104.820	0	végétation (hautes herbes)
116	205.710	104.825	0	végétation (hautes herbes)
117	205.717	104.807	0	terre
118	205.702	104.797	0	· · · · · · · · · · · · · · · · · · ·
119 120	205.688 205.674	104.783 104.768	0	terre
121	205.659	104.768	0	terre terre
122	205.649	104.745	1	drain
123	205.636	104.727	0	drain
124	205.654	104.721	0	terre
125	205.661	104.735	0	terre
126	205.664	104.752	0	terre
127	205.672	104.767	0	terre
128	205.683	104.783	0	terre
129	205.694	104.799	0	végétation (hautes herbes)
130 131	205.713	104.805	0	végétation (hautes herbes)
132	205.720 205.705	104.793 104.790	0	terre terre
133	205.703	104.790	0	terre
134	205.663	104.731	0	drain (hautes herbes)
135	205.686	104.730	0	drain (hautes herbes)
136	205.703	104.741	0	drain (hautes herbes)
137	205.717	104.749	0	drain (hautes herbes)
138	205.738	104.765	0	drain (hautes herbes)
139	205.743	104.780	0	drain (hautes herbes)
140	205.737	104.800	21	drain (hautes herbes)
141	205.727	104.817	0	drain (hautes herbes)
142	205.715	104.830	0	drain (hautes herbes)
143	205.711	104.847	0	drain (hautes herbes)
144	205.706	104.867	0	drain (hautes herbes)
145	205.700	104.882	0	drain (hautes herbes)