Photos couverture © SPW-DGARNE(DGO 3)

Fontaine de l'ours à Andenne
Forage exploité
Argilière de Celles à Houyet
Puits et sonde de mesure de niveau piézométrique
Emergence (source)
Essai de traçage au Chantoir de Rostenne à Dinant
Galerie de Hesbaye
Extrait de la carte hydrogéologique de Grupont - Saint-Hubert
Frédéric DOSSIN, Samantha REKK, Ludovic CAPETTE, Vincent HALLET

Université de Namur
Rue de Bruxelles, 61 - B-5000 Namur (Belgique)

NOTICE EXPLICATIVE

2015

Première version : Janvier 2005
Actualisation partielle : Septembre 2015
VI. EXPLOITATION DES AQUIFERES .. 53
 VI.1. VOLUMES PRELEVES POUR LA DISTRIBUTION PUBLIQUE 54
 VI.2. AUTRES VOLUMES CAPTES .. 54

VII. PARAMETRES HYDROGEOLOGIQUES ... 56
 VII.1. INTRODUCTION ... 56
 VII.2. PARAMETRES D'ECOULEMENT ... 58
 VII.3. PARAMETRES DE TRANSPORT .. 59

VIII. ZONES DE PROTECTION ... 60
 VIII.1. CADRE LEGAL .. 60
 VIII.2. MESURES DE PROTECTION .. 62
 VIII.3. ZONES DE PREVENTION AUTOUR DES CAPTAGES 62
 VIII.3.1. Zones de prévention arrêtées .. 63
 VIII.3.2. Zones de prévention à définir ... 64

IX. METHODOLOGIE D'ELABORATION DE LA CARTE HYDROGEOLOGIQUE 65
 IX.1. SOURCES DE DONNEES .. 65
 IX.1.1. Données géologiques .. 65
 IX.1.2. Données météorologiques et hydrologiques 65
 IX.1.3. Données hydrogéologiques .. 66
 IX.1.3.1. Localisation des ouvrages et sources 66
 IX.1.3.2. Données piézométriques .. 66
 IX.1.3.3. Données hydrochimiques .. 66
 IX.2. ENCODAGE DANS UNE BASE DE DONNEES 66
 IX.2.1. Construction de la carte hydrogéologique 67
 IX.3. PRESENTATION DU POSTER A0 ... 67
 IX.3.1. Carte hydrogéologique principale 67
 IX.3.2. Carte des informations complémentaires et des caractères des nappes 68
 IX.3.3. Carte des volumes prélevés .. 68
 IX.3.4. Tableau de correspondance ‘Géologie – Hydrogéologie’ 69
 IX.3.5. Coupes hydrogéologiques ... 69
 IX.3.6. Avertissement ... 69

X. REFERENCES .. 70

ANNEXE 1 : LISTE DES ABBREVIATIONS ... 73

ANNEXE 2 : TABLE DES ILLUSTRATIONS .. 74

ANNEXE 3 : LISTE DES TABLEAUX .. 76

ANNEXE 4 : COORDONNEES GEOGRAPHIQUES DES OUVRAGES CITES DANS LA NOTICE. 77
AVANT-PROPOS

La carte hydrogéologique de Grupont – Saint-Hubert s’inscrit dans le projet cartographique "Eaux souterraines" commandé et financé par le Service Public de Wallonie (SPW) : Direction générale opérationnelle Agriculture, Ressources naturelles et Environnement (DGO3 ; http://environnement.wallonie.be/). Quatre équipes universitaires collaborent à ce projet : l'Université de Namur (Département de Géologie, UNamur), l'Université de Mons (Faculté Polytechnique, UMons) et l'Université de Liège (ArGEnCO-GEO³-Hydrogéologie & Sciences et Gestion de l'Environnement, ULg-Campus d'Arlon, ULg).

Les cartes hydrogéologiques sont basées sur un maximum de données géologiques, hydrogéologiques et hydrochimiques, recueillies auprès de divers organismes. Elles ont pour objectif d’informer sur l’extension, la géométrie et les caractéristiques hydrogéologiques, hydrodynamiques et hydrochimiques des nappes aquifères, toute personne, société ou institution concernées par la gestion, tant quantitative que qualitative, des ressources en eaux.

La base de données hydrogéologiques de Wallonie (BD Hydro), principale source de données servant à l’élaboration des cartes hydrogéologiques, est en perpétuelle amélioration afin d’aboutir à une unique base de données centralisée, régulièrement mise à jour (Gogu, 2000 ; Gogu et al., 2001 ; Wojda et al., 2005).

La carte de Grupont – Saint-Hubert a été réalisée par F. Dossin et S. Rekk (licenciés en Sciences Géologiques) en 2005 et le projet supervisé par le Prof. Vincent Hallet du Département de Géologie de l'Université de Namur. La carte a été revue et mise à jour partiellement en 2015 par L. Capette (licencié en Sciences Géologiques) avant son édition et sa publication sur Internet par le SPW – DGO 3.

Par un choix délibéré, toute superposition outrancière d’informations conduisant à réduire la lisibilité de la carte a été évitée. Dans ce but, outre la carte principale, deux cartes thématiques, deux coupes, et un tableau lithostratigraphique sont présentés.

Les données utilisées pour la réalisation de la carte ont été encodées dans une base de données sous le format «File GeoDataBase» qui a été remise à la Direction des Eaux Souterraines (Département de l'Environnement et de l'Eau, DGO3 DGARNE, SPW).

La carte hydrogéologique de Grupont – Saint-Hubert ainsi que toutes les autres cartes hydrogéologiques de Wallonie éditées peuvent être consultées dynamiquement ou téléchargées, ainsi que leurs notices explicatives, au format .pdf sur le site et l’application...
webGIS de la Carte hydrogéologique de Wallonie via le lien suivant :

Tout au long de cette notice, afin d'éviter une surcharge des figures, la symbologie fera référence, sauf mention contraire, aux légendes du poster joint à cette notice.
I. INTRODUCTION

La région couverte par la feuille 59/7-8 Grupont – Saint-Hubert est située à une septantaine de kilomètres au sud-est de la ville de Namur et à une quarantaine à l'ouest de Bastogne (Figure I.1). La région couverte par cette carte se trouve quasi entièrement dans la province du Luxembourg ; seule une petite zone boisée située à l'extrémité NW de la carte appartient à la commune de Rochefort et, par conséquent, se trouve dans la province de Namur.

Les principales nappes souterraines exploitées se situent dans des niveaux de grès, quartzites et quartzophyllades du Dévonien inférieur et du Dévonien moyen ainsi que, dans une moindre mesure, dans des calcaires couviniens. Ces formations géologiques appartiennent à la Calestienne pour la partie nord-ouest de la carte et à la bordure nord du massif schisto-gréseux de l’Ardenne pour le reste.

Figure I.1 : Localisation de la carte Grupont – Saint-Hubert (planche IGN 59/7-8 au 1/25.000)

La carte hydrogéologique présentée ci-après est construite sur base de la carte géologique de Forir (1900).
II. CADRES GÉOGRAPHIQUE, GÉOMORPHOLOGIQUE ET HYDROGRAPHIQUE

D'une superficie de 160 km² (équivalent à une planche topographique au 1/25 000), la planche Grupont – Saint-Hubert est principalement située dans la Province du Luxembourg, seule une toute petite bande boisée à son extrémité nord-ouest est en Province de Namur. Elle s'étend principalement sur le territoire des communes de Tellin et de Saint-Hubert et dans une moindre mesure de Libin (localité de Smuid) et de Nassogne (localité de Mormont). Des zones boisées et inhabitées appartenant aux communes de Rochefort, Sainte-Ode et Tenneville sont également présentes sur cette carte 59/7-8.

Du point de vue géographique, cette région appartient majoritairement à l'Ardenne septentrionale, caractérisée par des altitudes élevées (plus de 400 m pour les crêtes) et les dénivellations importantes (plus de 150 m). Les biotopes caractéristiques des sols acides dominent, du fait de l'origine quasi uniquement détritique du sous-sol (grès, shales, siltites, …). Une petite zone de quelques km² à l'extrémité nord-ouest de la carte est marquée par une topographie plus plane que l'Ardenne mais présentant des buttes calcaires (dénivellations pouvant dépasser les 100 m). Elle fait partie de la Calestienne, région essentiellement calcaire séparant la dépression schisteuse de la Famenne et l'Ardenne (Figure II.1).

Figure II.1 : Contexte géomorphologique général de la Belgique, situation de la Calestienne et de la carte 59/7-8 Grupont – Saint-Hubert (d'après Bonniver, 2011, modifié)
La densité de population sur le territoire de cette carte est faible. La majorité de l’espace est occupé par des zones boisées (bois communaux ou domaines privés) ou par des pâtures à proximité des diverses agglomérations. Les principaux centres urbanisés sont les entités de Tellin et Saint-Hubert, avec une plus grande importance pour cette dernière. Les principales activités économiques de la région sont l’exploitation forestière (ligniculture, chasse, tourisme …)

Le réseau hydrographique (Figure II.2) se répartit de manière homogène sur toute la carte. Le principal cours d’eau est la Lhomme. Son cours peut être subdivisé en deux parties selon son orientation :

- En amont de Mirwart, elle alterne les orientations sud-nord et est-ouest. Ces orientations sont respectivement perpendiculaire et parallèle aux structures géologiques locales ;
- En aval de Mirwart, son cours adopte un tracé plus méandreux dans une plaine d’inondation plus large. Le tracé global de la Lomme est alors orienté SSE-NNW.

En plus de la Lomme, les principaux cours d’eau drainant la région sont : la Masblette (N), la Wamme (NE), le Ruisseau de Basseilles (E) et le Ruisseau de Poix (SW). Tous ces cours d’eaux appartiennent au bassin versant majeur de la Lesse, sauf le Ruisseau de Basseilles, à l’extrémité est de la carte, qui appartient au bassin de l’Ourthe. Les superficies des bassins de ces cours d’eau sont de 63,3 km² pour le bassin de la Lomme, 29,3 km² pour celui de la Masblette, 6,6 km² pour la Wamme, 8 km² pour le ruisseau de Basseilles, 38,5 km² pour le ruisseau de Poix, les 14,1 km² restants appartenant au bassin versant direct de la Lesse et d’autres de ses affluents, de moindre importance.
Figure II.2 : Réseau hydrographique et bassins versants de la carte 59/7-8 Grupont – Saint-Hubert
III. CADRE GÉOLOGIQUE

III.1. CADRE GÉOLOGIQUE GÉNÉRAL

L’histoire géologique de la région se présente sous la forme d’une série de phases de sédimentation, de plissement et d’érosion brièvement décrites ci-après.

III.1.1. Sédimentation dévonienne

Les dépôts paléozoïques observés dans la région de Grupont – Saint-Hubert s’étendent du Lochkovien au Givetien (Tableau III.1). A plus grande échelle, ces dépôts font partie de la transgression dévonien-dinantienne dont la base se caractérise, en Ardenne, par une discordance majeure résultant de l’avancée de la transgression sur le socle calédonien érodé.

Cette région permet d’observer le passage de la sédimentation détritique terrigène du Dévonien inférieur vers une sédimentation de type carbonaté, qui caractérise le Givetien et le Frasnien. On remarque ainsi l’établissement d’un régime récifal, attesté par les bioconstructions de l’Eifelien et du Givetien puis, par les biohermes du Frasnien. Ces périodes de production carbonatée sont interrompues par des épisodes terrigènes d’importances diverses.

III.1.2. L’orogenèse hercynienne

Pendant une période s’étendant environ de -360 à -290 millions d’années, la pile sédimentaire dévono-carbonifère subit l’orogenèse hercynienne. Cette orogenèse marquerait la suture progressive des continents Gondwana et Laurasia qui formeront au Permo-Trias un super continent appelé Pangée.

La carte Grupont – Saint-Hubert est à cheval sur la bordure sud-est du Synclinorium de Dinant et la bordure nord de l’Anticlinorium de l’Ardenne (Figure III.1).
Figure III.1 : Localisation de la planche 59/7-8 Grupont – Saint-Hubert sur la carte géologique en Wallonie (d’après de Béthune, 1961, modifié)

III.2. CADRE GÉOLOGIQUE DE LA CARTE

Hormis les alluvions modernes des vallées, toutes les unités géologiques présentes sur la carte 59/7-8 appartiennent au système Dévonien. La majeure partie de la carte est couverte par des formations datant du Dévonien inférieur. Les lithologies dominantes sont les shales, les schistos, les phyllades, les quartzophyllades, les siltites, les grès et les quartzites. Le Dévonien moyen n’affleure que dans un petit synclinal présent à l’extrémité nord-ouest de la carte. Il est caractérisé par des lithologies plus calcaires et des shales. Toutes ces formations ont subi une déformation compressive lors de l’orogenèse varisque qui est responsable des plis et failles présents dans la région. Le Tableau III.1 reprend l'ensemble des formations géologiques qui affleurent dans la zone cartographiée (Forir, 1900).

La description des unités géologiques est basée sur la carte réalisée par Forir (1900). Pour les anciennes cartes géologiques de Belgique, l’unité de base est l’assise (unité bio-stratigraphique) alors que pour la carte géologique de Wallonie, l’unité de base est la formation (unité litho-stratigraphique). Les cartes hydrogéologiques de Wallonie, sont basées sur ce nouveau fond géologique lorsqu’il est disponible. Mais ce n’est pas le cas de la carte hydrogéologique de Grupont – Saint-Hubert (59/7-8) où c’est la carte géologique de Forir (1900) qui a été vectorisée et sert de fond à la carte hydrogéologique Grupont – Saint-Hubert (59/7-8). Les termes utilisés sur la carte hydrogéologique et dans cette notice explicative
sont ceux précisés sur la carte de Forir afin d’éviter toute confusion pour le lecteur non spécialiste. La nomenclature utilisée par l’ancienne carte géologique n’a pas été réactualisée. Les définitions de certains termes propres à cette ancienne nomenclature sont reprises ci-dessous (Dejonghe, 2007).

- **Arkose** : roche consolidée contenant des grains de quartz (jusqu’à 60% environ), de feldspath (25% au moins), quelques micas ainsi qu’un ciment argileux (environ 15%). En Belgique, ce terme a souvent été utilisé abusivement ;
- **Grauwacke** : terme souvent utilisé anciennement dans un sens erroné en Belgique, pour désigner des shales, des siltites ou des grès fossilifères décalcifiés. Son usage n’est pas recommandé. En réalité, la grauwacke est une roche de la classe des arénites, à ciment abondant (environ 20%), contenant des débris abondants (30% ou plus) de roches magmatiques et de schistes. Les vraies grauwackes sont rares en Belgique ;
- **Poudingue** : conglomérat dont les éléments sont arrondis ;
- **Psammite** : mot utilisé jadis en Belgique pour désigner des grès micacés largement employés en construction. La forte proportion de paillettes de micas, disposées en lits parallèles, leur confère une aptitude à se débiter en feuillets ;
- **Schiste** : roche argileuse de la classe des lutites, consolidée, ayant pris une schistosité (notons que le mot schiste a souvent été employé en français dans le sens de shale).

Les noms des Etages Gedinnien, Coblencien, Burnotien et Couvinien, employés dans cette notice par souci de conformité avec la carte de Forir, sont à présent dénommés respectivement Lochkovien, Praguien, Emsien et Eifelien. L’Emsien englobant le Coblencien supérieur et le Burnotien (Tableau III.1).

III.2.1. Cadre lithostratigraphique

Tableau III.1 : Tableau lithostratigraphique de la carte Grupont – Saint-Hubert d’après Forir (1900)

<table>
<thead>
<tr>
<th>Ére</th>
<th>Système</th>
<th>Série</th>
<th>Étage (nouvelle nomenclature)</th>
<th>Étage (ancienne nomenclature)</th>
<th>Assise</th>
<th>Lithologie (d’après Forir, 1900)</th>
<th>Abréviation de la carte géologique</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUATERNIAIRE</td>
<td>HOLOCENE</td>
<td></td>
<td>GIVETIEN</td>
<td>GIVETIEN</td>
<td></td>
<td>Alluvions modernes des vallées</td>
<td>alm</td>
</tr>
<tr>
<td>MÉRIEN</td>
<td>MOYEN</td>
<td></td>
<td>GIVETIEN</td>
<td>GIVETIEN</td>
<td></td>
<td>Calcaire à stromatoporoides et polypiers, avec couche de schistes à la base</td>
<td>Gvb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Givet</td>
<td>Calcaires</td>
<td></td>
<td>Calcaires</td>
<td>Gva</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COUVINIEN</td>
<td>Colgne</td>
<td></td>
<td>Schistes</td>
<td>Cobn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coun</td>
<td>Calcaires</td>
<td></td>
<td>Calcaires</td>
<td>Cobm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bure</td>
<td>Dominance de grauwacke et grès avec schistes; bancs de calcaire au sommet</td>
<td></td>
<td></td>
<td>Coa</td>
</tr>
<tr>
<td>DEVONIEN</td>
<td>INFÉRIEUR</td>
<td></td>
<td>ENSIEN</td>
<td>BURNOTIEN</td>
<td></td>
<td>Grès dominants et schistes rouges</td>
<td>Bt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vireux</td>
<td>Schistes sombres avec quelques bancs de grès</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Houftalize</td>
<td>Grauwackes, psammites et grès dominants avec quelques intercalations de phyllades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anor, Bastogne et Mirwart</td>
<td>Alternance de phyllades, schistes et siltites avec quelques paquets de grauwackes et de grès</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOCHKOVIEN</td>
<td>SAINT-HUBERT</td>
<td></td>
<td>Schistes dominants avec grès parfois feldspathiques, psammites et quartzophyllades</td>
<td>Gd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oignies</td>
<td>Schistes et shales bigarrés dominants, avec intercalations de grès et d’arkoses</td>
<td></td>
<td></td>
<td>Gc</td>
</tr>
</tbody>
</table>

III.2.1.1. Le Paléozoïque

Le Dévonien inférieur

Le Dévonien inférieur est constitué des étages Gedinnien (G), Coblençien (Cb) et Burnotien (Bt).

Étage Gedinnien (G)

Seul le Gedinnien supérieur est présent sur cette carte. Il est subdivisé en deux assises : l’Assise d’Oignies et l’Assise de Saint-Hubert.

L’Assise d’Oignies (Gc) est formée principalement de shales et de phyllades bigarrés. Elle comporte également de nombreux bancs schisteux fortement chargés de nodules carbonatés disparaissant par dissolution pour ne laisser que des cavités tapisées de limonite. Sa puissance, d’après les mesures de pendage et la longueur cartographique de cette formation à l’affleurement, serait de l’ordre de 500 m, ce qui concorde avec les estimations d’Asselberghs (1946). Du point de vue des teintes de ces roches schisteuses, deux faciès peuvent être distingués : le faciès d’Oignies et le faciès d’Anloy. Le faciès d’Oignies est caractérisé par des teintes vives, lie de vin, rouges ou vertes et bigarrées. Il est dominant sur la planche 59/7-8. Le faciès d’Anloy, quant à lui, comprend des nuances plus variées mais plus effacées. Les teintes rouges y sont moins vives, pouvant même disparaître, tandis que des teintes bleues apparaissent. Il est présent à l’extrémité sud de
Cette carte. Selon Asselberghs (1946), les faciès d’Oignies et d’Anloy sont fonction de la texture des roches, les teintes vives étant liées aux schistes tandis que les teintes plus variées et effacées seraient plutôt liées aux phyllades. Les intercalations de roches quartzeuses sont nombreuses. Dans la partie supérieure de l’Assise, ce sont le plus souvent des bancs isolés de quartzite. Plus bas, ces intercalations sont plus fréquentes et plus puissantes. Des niveaux d’« arkoses » accompagnées de quartzites et de poudingues y apparaissent et peuvent atteindre des épaisseurs de 30 m. Ces niveaux d’arkoses et de quartzites sont souvent lenticulaires et présentent des stratifications croisées. Les passages des arkoses aux quartzites et inversement s’observent aussi bien latéralement que verticalement ; ces deux lithologies peuvent même coexister dans certains bancs.

L’Assise de Saint-Hubert (Gd) est dominée par un ensemble de schistes verts à gris vert et de phyllades gris vert à verts, de quartzophyllades, de phyllades, de psammites, de quartzites verdâtres, gris ou verts. Les nuances de couleur sont moins vives que pour l’Assise d’Oignies. Ces roches sont toutes très riches en mica, ce qui les distingue de l’Assise d’Oignies. Les schistes sont nettement dominants. De même que dans l’Assise d’Oignies, les schistes de l’Assise de Saint-Hubert sont fréquemment chargés de nodules carbonatés qui disparaissent par dissolution en laissant un résidu brun et poussiéreux dans la roche cariée. Ils sont cependant moins abondants que dans l’Assise d’Oignies. Des quartzites à ciment calcaire (5 à 10% de CaCO₃) ont été relevés à Poix St Hubert et au sud de Saint-Hubert (Asselberghs, 1946).

La puissance de l’Assise de Saint-Hubert a été estimée par Asselberghs (1946) à plus de 600 m dans la région concernée par cette carte.

Etage Coblencien (Cb)

Le Coblencien est représenté par quatre assises, de la plus ancienne à la plus jeune :

- l’Assise des Grès d’Anor et de Bastogne ;
- l’Assise de Mirwart ;
- l’Assise de Houffalize ;
- l’Assise de Vireux.

L’Assise des Grès d’Anor et de Bastogne (Cb1a) et l’Assise de Mirwart (Cb1b) ne sont pas dissociables sur la carte géologique de Forir (1900). Ces roches consistent en une alternance irrégulière de phyllades, de schistes et de siltites bleu noir avec des quartzophyllades et des bancs ou des paquets de grès et quartzites clairs. Les affleurements présentent dans leur majorité les zones plus quartzitiques ou quartzophylladeuses, ce qui pourrait laisser croire que ces lithologies sont dominantes. Ce n’est cependant pas le cas,
les roches argileuses étant majoritaires. L'érosion différentielle a cependant mis en évidence les quartzites et les grès au détriment des schistes. Les grès, parfois très légèrement carbonatés, se présentent sous la forme de bancs isolés ou en paquets de 4 à 10 mètres d'épaisseur. De minces bancs de schistes viennent fréquemment s'intercaler entre eux. Les quartzophyllades se présentent sous la forme de barres plurimétriques bien individualisées ou constituent une transition entre les phyllades et les quartzites. Ils sont formés par l'alternance de fines strates (millimétriques à centimétriques) phylladeuses et gréseuses. Les proportions relatives de ces deux lithologies sont extrêmement variables.

La puissance cumulée de ces deux assises, d'après les mesures de pendage et leur longueur cartographique, serait de l'ordre de 700 m.

L'Assise de Houffalize (Cb2) est caractérisée par l'alternance de trois lithologies différentes :

- des phyllades bleu sombre à lamines gréseuses couleur rouille ;
- des siltites et grès argileux gris à bleus en bancs plurimétriques ;
- des bancs pluridécimétriques de grès bleus, carbonatés, cariés superficiellement et limoniteux.

Ces grès carbonatés (anciennement appelés macignos mais ce terme est à éviter) passent localement à des calcaires gréseux crinoïdiques. Des zones plus calcaireuses peuvent également apparaître dans les schistes, sous la forme de nodules de quelques centimètres d'épaisseur. Des grès et des quartzites verts, gris ou blancs, parfois légèrement micacés, constituent localement une lithologie accessoire. Cette assise se remarque également par l'intercalation à plusieurs niveaux de quartzites blancs ou blanc cassé, souvent fossilifères. Son sommet se caractérise par d'abondants paquets de bancs centimétriques à métriques de grès gris ou verdâtres, localement argileux. Ces grès viennent s'intercaler dans des phyllades gris-bleu. Asselberghs (1946) a distingué deux faciès différents : le faciès des Ammonines et celui de Longlier. Ce dernier comporte plus de bancs de quartzites et de quartzophyllades du fait d'une diminution de l'importance des niveaux carbonatés par rapport au faciès des Ammonines. Par analogie avec la carte voisine 60/1-2 Champion – La Roche-en-Ardenne (Dejonghe et Hance, 2001), la puissance de l'Assise de Houffalize est estimée à 300 m.

L'Assise de Vireux (Cb3) est dominée par des schistes sombres (Forir, 1900). Des grès sombres sont également présents. Suivant le clivage et la composante grése-quartzitique, les roches se présentent sous la forme de gros bancs compacts, de texture fine et chargés de minces strates de quartzite ou elles se débitent en menus morceaux ou en baguettes. Quelques intercalations schisteuses régulièrement feuilletées sont localement observées. Ces niveaux franchement schisteux sont souvent quartzeux et micacés, parfois noduleux.
Les roches gréseuses sont, dans la majorité des cas, des quartzites gris de fer à verts en gros bancs pouvant dépasser 1 m d'épaisseur et groupés en paquets pouvant atteindre 10 m. L'Assise de Vireux se caractérise également par quelques minces bancs (3 à 20 cm d'épaisseur) de grès argileux à ciment carbonaté (Asselberghs, 1946).

Asselberghs (1946) estime l'épaisseur de cette assise à 600 m au sud de Grupont. Cependant, la puissance calculée, d'après les mesures de pendance et la longueur cartographique d'affleurement, serait de l'ordre de 400 m.

Etage Burnotien (Bt)

Le Burnotien est représenté sur cette carte par l'Assise de Winenne.

L'Assise de Winenne est caractérisée par un ensemble de schistes lie de vin, vert clair ou bigarrés et de roches gréso-quartzitiques généralement vertes mais pouvant être rouges ou grises. Les grès et les quartzites se présentent en bancs isolés ou en paquets de bancs pouvant atteindre une puissance cumulée de 25 m. Les quartzites peuvent par endroit être grossiers, graveleux et parsemés de points de séricite.

La puissance de cette assise (Asselberghs, 1946) est estimée à environ 500 m au sud de Grupont.

Le Dévonien moyen

Le Dévonien moyen s'étend du Couvinien (act. Eifelien) au Givetien. Ces deux étages sont peu représentés sur cette carte et n'affleurent qu'à son extrémité nord-ouest.

Le passage du Dévonien inférieur au Dévonien moyen marque un changement, une sédimentation détritique terrigène vers une sédimentation plutôt carbonatée qui caractérise le Dévonien moyen et la base du Dévonien supérieur. Le Couvinien comprend encore des lithologies plus détritiques (poudingues et grès).

Etage Couvinien (Co)

Le Couvinien débute par un niveau (Coa) dominé par des schistes, des grauwackes et des grès (dits « de Bure »). Les schistes sont généralement quartzeux, parfois micacés, de couleur bleue, gris bleu, grise ou encore verdâtre. Des quartzites gris ou verts, fréquemment micacés ou riches en fossiles sont signalés par Asselberghs (1946). Ceux-ci se présentent en bancs isolés ou en paquets atteignant 5 m d'épaisseur. Les bancs de grauwackes sont criblés de fossiles dont la dissolution fréquente laisse une poussière ocre. Le sommet de ce niveau Coa comporte localement des bancs calcaires riches en fossiles (Spiriferidés principalement). Ces bancs ne sont cependant pas cartographiables et ne sont par
conséquent pas isolés du reste de ce niveau sur cette carte géologique, de même que dans la carte géologique dressée par Forir (1900).

A ce niveau Coa, succède le niveau Cob. Ce dernier peut être subdivisé en deux parties. La première, Cobn, est largement dominante et est constituée uniquement de schistes. La seconde, Cobm, consiste en une passée de calcaires francs et riches en fossiles (*Calceola sandalina* et *Spirifer sp.*) qui vient briser la monotonie des lithologies schisteuses.

Etage Givetien (Gv)

Le Givetien est très peu présent sur la carte Grupont – Saint-Hubert. Il affleure uniquement dans une petite zone boisée, entre Tellin et Wavreilles. Il est subdivisé en deux unités : le Givetien inférieur (Gva) et le Givetien supérieur (Gvb). Le Gva, d’une épaisseur de l’ordre de 250 m, est entièrement constitué de calcaire franc, parfois argileux, stratifié en bancs centimétriques à métriques, avec de rares passées schisteuses. Le Gvb, quant à lui, se compose, sur environ 130 m d’épaisseur, de calcaire franc à argileux, avec quelques niveaux schisteux à sa base.

III.2.1.2. Le Cénozoïque

Le Quaternaire

Les dépôts quaternaires correspondent aux alluvions modernes des fonds de vallées des cours d’eau (alm). Elles sont constituées de galets, graviers, sables, argiles et limons, résultats de l’érosion du substrat local et régional. Leur texture est assez variable et un même profil peut présenter des couches successives fort différentes.

III.2.2. Cadre structural

Du nord au sud, les plis suivants sont rencontrés: le Synclinal de Belvaux, l’Anticlinal de Smuid et le Synclinal de Redu. Ces structures sont localisées à la Figure III.2.
Le synclinal de Belvaux est légèrement déversé vers le nord et accuse une virgation vers le NW entre Tellin et Bure. Delvaux de Fenfe (1985) rapporte la présence de petites failles au niveau de sa terminaison périclinale. Elles ne sont pas reprises sur la carte de Forir (1900) qui sert de base à cette carte hydrogéologique. L'axe du synclinal est situé sur la carte voisine au nord 59/3-4 Rochefort – Nassogne (Stainier, 1895).

Au sud du Synclinal de Belvaux vient un large pli anticlinal affecté de plissottements secondaires, l'Anticlinal de Smuid. Son coeur est formé par les schistes bigarrés de l'Assise d'Oignies, entre Smuid et Arville. Son axe, selon Asselberghs (1946), passe à proximité du lieu-dit "Petite Taille", au nord-ouest du Val de Poix et au sud d'Arville. Vers le méridien de Saint-Hubert, l'axe doit se recourber vers le nord-est et passer par une digitation. Le flanc nord est caractérisé par des plis en chaise descendant vers le nord tandis que le flanc sud à une inclinaison moyenne d'une vingtaine de degrés.

Au sud de l'Anticlinal de Smuid vient le Synclinal de Redu, dont uniquement le flanc nord est observable au sud de cette carte. Ce synclinal est affecté de plis et d'ondulations secondaires. Sur le flanc nord, des pendages orientés aussi bien vers le nord que vers le sud sont observés, suite à la présence de plis secondaires.
Figure III.2 : Carte structurale simplifiée de la planche 59/7-8 Grupont – Saint-Hubert
IV. CADRE HYDROGÉOLOGIQUE

Les eaux souterraines de la région de Grupont – Saint-Hubert sont présentes dans toutes les unités géologiques qui couvrent la carte. Leur comportement et leur productivité sont cependant fortement conditionnés par la nature et la structure de la roche dans laquelle l’eau est stockée. C’est pourquoi les formations géologiques sont regroupées ou subdivisées en unités hydrogéologiques, chacune étant caractérisée par un comportement hydrodynamique qui lui est propre.

Trois termes sont utilisés pour qualifier le caractère plus ou moins perméable des formations rocheuses en hydrogéologie (UNESCO-OMM, 1992) :

- **Aquifère** : formation perméable permettant d'exploiter de grandes quantités d'eaux souterraines ;
- **Aquitard** : formation semi-perméable dans laquelle l’écoulement se fait à une vitesse plus réduite que dans un aquifère, son exploitation est possible mais de capacité limitée ;
- **Aquiclude** : formation à caractère imperméable dans laquelle on ne peut économiquement extraire des quantités d’eau appréciables.

Ces définitions assez subjectives sont à manipuler avec précaution. Elles sont utilisées ici afin de renseigner, à une échelle régionale, sur le caractère globalement perméable, semi-perméable ou imperméable d'un ensemble de couches géologiques. Elles donnent une idée du potentiel économique que représentent les différentes unités hydrogéologiques en termes d’exploitation. Elles se basent principalement sur la description lithologique de ces unités.

De manière générale c'est la porosité efficace (la capacité pour une roche saturée de libérer un fluide par drainage gravitaire) et la perméabilité, proportionnelle à la granulométrie des grains, qui va déterminer le caractère plus ou moins aquifère d'une roche (Figure IV.1). Les roches cohérentes sont, en principe, imperméables. Néanmoins, la fissuration, l'altération ou la dissolution peuvent modifier leur perméabilité (Figure IV.1) :

- La fracturation crée un réseau de fissures au sein duquel l'eau peut circuler ;
- L'altération des roches induit des comportements différents selon leur lithologie. Trois comportements principaux se présentent :
 - La roche est un carbonate : l'altération entraîne une dissolution de la roche et un agrandissement du réseau de fractures existant. La perméabilité est donc augmentée ;
La roche est un grès : l’altération donne du sable, ce dernier présente une plus grande porosité efficace et une bonne perméabilité ;
La roche est un shale/schiste : l’altération donne une argile qui colmate le réseau de fractures. La perméabilité est diminuée.

A. Roche sédimentaire de granulométrie triée, porosité élevée ; **B. roche sédimentaire de granulométrie mal triée, porosité faible** ; **C. roche sédimentaire de granulométrie triée et constituée de grains poreux, porosité très élevée** ; **D. roche sédimentaire de granulométrie triée mais dont la porosité est diminuée par une précipitation minéral dans les interstices** ; **E. roches cohérentes rendues poreuses par dissolution** ; **F. roches cohérentes rendues poreuses par fracturation.**

Figure IV.1 : différents types de porosité dans les roches meubles et cohérentes (d’après Meinzer, 1923)

Tableau IV.1 : Porosité totale, porosité efficace et perméabilité des principaux types de roches (d’après Castany, 1998)

<table>
<thead>
<tr>
<th>Roche</th>
<th>Porosité totale (%)</th>
<th>Porosité efficace (%)</th>
<th>Perméabilité K (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argile</td>
<td>45 à 55</td>
<td>0 à 5</td>
<td>10^{-12} à 10^{-9}</td>
</tr>
<tr>
<td>Sable moyen</td>
<td>30 à 40</td>
<td>25 à 35</td>
<td>10^{-6} à 10^{-2}</td>
</tr>
<tr>
<td>Gravier</td>
<td>25 à 35</td>
<td>20 à 30</td>
<td>10^{-3} à 10</td>
</tr>
<tr>
<td>Grès</td>
<td>0 à 10</td>
<td>0 à 5</td>
<td>10^{-10} à 10^{-6}</td>
</tr>
<tr>
<td>Calcaire</td>
<td>5 à 15</td>
<td>0 à 10</td>
<td>10^{-9} à 10^{-6}</td>
</tr>
<tr>
<td>Basalte massif</td>
<td>0 à 5</td>
<td>0 à 5</td>
<td>10^{-11} à 10^{-6}</td>
</tr>
<tr>
<td>Schiste</td>
<td>0 à 20</td>
<td>0 à 5</td>
<td>10^{-13} à 10^{-9}</td>
</tr>
</tbody>
</table>

Les failles, fréquemment minéralisées (quartz, barite, calcite,…), peuvent aussi constituer des zones de circulation préférentielles des eaux souterraines.
IV.1. DESCRIPTION DES UNITÉS HYDROGÉOLOGIQUES

Les unités hydrogéologiques définies pour la carte de Grupont – Saint-Hubert sont décrites ci-dessous dans l'ordre stratigraphique, de la plus ancienne à la plus récente. Elles sont reprises de manière synthétique dans le Tableau IV.2 ainsi que dans le tableau lithostratigraphique du document cartographique qui accompagne cette notice.

IV.1.1. Aquilude à niveaux aquifères du Dévonien inférieur

Cette unité hydrogéologique comprend l'ensemble du Gedinnien (assises de Oignies et Saint-Hubert, Gc et Gd) et une partie du Coblencien matérialisé par le regroupement des assises d'Anor, Bastogne et Mirwart (Cb1b + Cb1a) ainsi que par l'Assise de Vireux (Cb3). Ces terrains sont dominés par des roches schisteuses et phylladeuses. L'altération de ces roches au niveau de leurs fractures produit des sédiments argileux venant colmater ces fissures, empêchant la circulation aisée de l'eau.

Cependant, des niveaux de grès, d'arkose et de quartzite viennent s'intercaler entre ces schistes et ces phyllades. L'altération de ces roches plus grossières fournit des sédiments sableux qui permettent une circulation plus aisée des eaux souterraines à travers le réseau des fissures. Ces niveaux plus gréseux constituent, s'ils sont fracturés, des aquifères de faibles dimensions. Ceux-ci peuvent être exploités localement mais leur perméabilité, et par conséquent la productivité des puits qui y sont implantés, ne peuvent rivaliser avec celles qui caractériseraient un aquifère localisé dans des calcaires fracturés (comme par exemple l'aquifère calcaire du Givetien).

En résumé, ces terrains constituent sur cette carte une unité hydrogéologique globalement aquilude, mais au sein de laquelle viennent s'intercaler de petits niveaux aquifères.

IV.1.2. Aquitard du Dévonien inférieur

Cette unité hydrogéologique comporte uniquement l'Assise de Houffalize (Cb2). Elle est caractérisée par des lithologies moins fines. Les psammites, les grès et les grauwackes y sont dominants. Les perméabilités au sein de ces roches sont plus élevées que précédemment mais restent néanmoins trop faibles pour qu'elles constituent un aquifère. Cette assise a donc été qualifiée d'aquitard.
<table>
<thead>
<tr>
<th>Ére</th>
<th>Système</th>
<th>Série</th>
<th>Étage (nouvelle nomenclature)</th>
<th>Étage (ancienne nomenclature)</th>
<th>Assise</th>
<th>Lithologie (d’après Forir, 1900)</th>
<th>Abréviation de la carte géologique</th>
<th>Caractéristiques hydrogéologiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>CÉNOZIQUÉ</td>
<td>QUATERNAIRES</td>
<td>HOLOCÈNE</td>
<td></td>
<td></td>
<td>Alluvions modernes des vallées</td>
<td>alm</td>
<td>Aquifère alluvial</td>
<td></td>
</tr>
<tr>
<td>MOYEN</td>
<td>GIVETIEN</td>
<td>GIVETIEN</td>
<td></td>
<td></td>
<td></td>
<td>Calcaire à stromatoporoides et polypiers, avec couche de schistes à la base</td>
<td>Gvb</td>
<td>Aquifère des calcaires du Givetien</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Givet</td>
<td></td>
<td></td>
<td>Cailloux et galets</td>
<td>Gva</td>
<td>Aquifère de l’Eifelien</td>
</tr>
<tr>
<td>EIFFELIEN</td>
<td>COUVINEN</td>
<td>COUVINEN</td>
<td></td>
<td></td>
<td>Schistes</td>
<td>Cobre</td>
<td></td>
<td>Aquifère de l’Eifelien</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Couvir</td>
<td></td>
<td></td>
<td>Cailloux et galets</td>
<td>Cbvm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bure</td>
<td>Dominance de grauwacke et grès avec schistes; bancs de calcaire au sommet</td>
<td>Coa</td>
<td></td>
<td></td>
<td>Aquifère de l’Eifelien</td>
</tr>
<tr>
<td>DEVONIEN</td>
<td>BURNOTIEN</td>
<td>BURNOTIEN</td>
<td></td>
<td></td>
<td>Bt</td>
<td>Grès dominants et schistes rouges</td>
<td></td>
<td>Aquifère à niveaux aquifères du Dévonien inférieur</td>
</tr>
<tr>
<td>PRÉ-DÉVONIEN</td>
<td>COMPLENIEN</td>
<td>COMPLENIEN</td>
<td></td>
<td></td>
<td></td>
<td>Schistes sombres avec quelques bancs de grès</td>
<td>Cb3</td>
<td>Aquifère à niveaux aquifères du Dévonien inférieur</td>
</tr>
<tr>
<td>PYRE-DÉVONIEN</td>
<td>ANORM. Bastogne et Minvart</td>
<td>ANORM. Bastogne et Minvart</td>
<td></td>
<td></td>
<td>Cb2</td>
<td>Grauwackes, psammites et grès dominants avec quelques intercalations de phyllades</td>
<td></td>
<td>Aquifère du Dévonien inférieur</td>
</tr>
<tr>
<td>PRÉ-DÉVONIEN</td>
<td>GEDINNIEN</td>
<td>GEDINNIEN</td>
<td></td>
<td></td>
<td></td>
<td>Aller de phyllades, schistes et siltites avec quelques paquets de grauwackes et de grès</td>
<td>Cb1b + Cb1a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Saint-Hubert</td>
<td>Schistes dominants avec grès parfois feldspathiques, psammites et quartzophyllades</td>
<td>Gd</td>
<td></td>
<td></td>
<td>Aquifère à niveaux aquifères du Dévonien inférieur</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oignies</td>
<td>Schistes et shales bigarrés dominants, avec intercalations de grès et d’arkoses</td>
<td>Gc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV.1.3. Aquitard à niveaux aquiclude du Dévonien inférieur

Cette unité, représentée sur la carte par le Burnotien et la seule Assise de Winenne (Bt), ressemble du point de vue lithologique au Coblencien moyen (aquitard du Dévonien inférieur). Les grès et les quartzites sont en effet très fréquents. Ceci mène à considérer cette unité hydrogéologique comme étant un aquitard. Cependant, de nombreux bancs de schistes rouges viennent s'intercaler entre les grès et les quartzites et constituent des barrières hydrogéologiques. Le Burnotien constitue donc sur cette carte un aquitard à niveaux aquiclude.

IV.1.4. Aquitard de l'Eifelien

L’aquitard de l'Eifelien correspond sur la carte au Couvinien inférieur (Coa) et plus précisément à l'Assise de Bure. Il se compose de grès, quartzites et grauwackes entrecoupés de bancs ou de paquets de schistes. Il possède donc les caractéristiques hydrogéologiques d'un aquitard. Le sommet de cette unité comporte des bancs de calcaire pur. Ceux-ci constituent des petits aquifères plus perméables. Ils sont cependant très localisés (et non cartographiés sur la carte hydrogéologique), ce qui ne permet pas leur exploitation de manière intensive.

IV.1.5. Aquifère de l'Eifelien

Cet aquifère comprend l'Assise de Couvin (Cobm) où des bancs de calcaire sont regroupés en un seul paquet homogène. Ils constituent un bon aquifère, du point de vue de leurs propriétés hydrodynamiques. Cet aquifère a cependant une épaisseur limitée. Cette épaisseur limitée ainsi que sa faible représentation à l'échelle de la carte de Grupont – Saint-Hubert font qu'il n'est pratiquement pas exploité.

IV.1.6. Aquiclude de l'Eifelien

Cet aquiclude consiste en une grosse épaisseur de schistes francs (Cobn). Il isole l'aquifère de l'Eifelien des unités hydrogéologiques sus-jacentes.

IV.1.7. Aquifère des calcaires du Givetien

L'ensemble des terrains givetiens de la carte Grupont – Saint-Hubert (Gva et Gvb) sont repris dans cette unité hydrogéologique. Elle est constituée quasi uniquement de calcaires. Ceci en fait un très bon aquifère du point de vue des propriétés hydrodynamiques. En effet, contrairement aux grès, un calcaire fracturé subit une dissolution au niveau de ses fractures, ce qui a pour effet d'augmenter l'épaisseur de celles-ci et donc d'augmenter la perméabilité de la formation calcaire. Des niveaux schisteux viennent s'intercaler localement
entre les bancs calcaires, constituant de petites barrières hydrgéologiques. Cependant, leur faible épaisseur et leur extension limitée ne permettent pas de les considérer comme des aquicludes locaux.

Le Givetien n'a cependant qu'une très faible extension sur l'étendue de la carte de Grupont – Saint-Hubert. Il n'affleure qu'à l'extrémité NW de la carte, au sein du Syncinal de Belvaux. Cet aquifère n'est d'ailleurs pas exploité sur cette carte.

IV.1.8. Aquifère alluvial

L'Aquifère alluvial est composé des alluvions modernes des vallées. La conductivité hydraulique des alluvions est fonction de leur granulométrie : les zones sablo-graveleuses conduiront bien mieux l'eau que les zones limono-argileuses. Ces sédiments peuvent donc former des aquifères locaux. Néanmoins, vu la nature argileuse suite à l'altération des formations généralement schisteuses voisinent et la faible épaisseur des dépôts, les potentialités hydrgéologiques des alluvions doivent être extrêmement limitées.

IV.2. PHÉNOMÈNES KARSTIQUES

Les seuls phénomènes karstiques présents sur la carte 59/7-8 sont localisés dans les formations calcaires du Syncinal de Belvaux (Figure IV.2). Ces phénomènes karstiques ne sont présents que dans les calcaires givetiens.

A l'exception de la dépression de Lorinchamps (site AKWA n°59/7-7, De Broyer *et al.*, 2002), qui pourrait être une petite carrière abandonnée, tous les phénomènes karstiques sont situés dans le thalweg du Ri des Boyes. Ils consistent généralement en de petites dépressions ou de petites cavités de quelques mètres de dimensions. Deux zones de pertes sont à noter dans le lit du Ri des Boyes. En suivant son cours, le ruisseau rencontre d'abord une zone de pertes diffuses qui s'étend sur une vingtaine de mètres (site AKWA n°59/7-3). Le cours d'eau ne disparaît pas complètement dans cette première zone. Une partie de ses eaux poursuivent leur écoulement en surface jusqu'à une seconde zone où elles rencontrent des pertes plus importantes (site AKWA n°59/7-3). Le Ri semble généralement s'y perdre totalement mais la prolongation du thalweg en aval indique qu'en fonction du débit les eaux de surface dépassent largement les derniers points de pertes. Toutes ces pertes semblent être en relation avec des résurgences localisées en rive droite de la Lesse à l'aval de Resteigne (Servais, 2006 ; Bonniver *et al.*, 2013).
IV.3. DESCRIPTION DE L'HYDROGÉOLOGIE RÉGIONALE

IV.3.1. Piézométrie

Du point de vue hydrogéologique, la région couverte par la carte 59/7-8 Grupon – Saint-Hubert peut être subdivisée en deux parties :

- la région de la Calestienne constituée de calcaires ;
- le Plateau Ardennais et la bordure de la Calestienne, constitués de roches d'origine détritique (grès, shales, …).

IV.3.1.1. Les calcaires de la Calestienne

Les formations calcaires de la Calestienne sont représentées sur l'étendue de cette carte par le Givetien (Gva et Gvb) et les lentilles calcaires du Couvinien (Cobm). Elles ne sont présentes que dans le Synclinal de Belvaux, à l'extrémité NW de la carte (Figure IV.2). Vu la perméabilité importante de ces formations de calcaires fracturés et karstifiés, la nappe doit probablement y adopter un profil assez plat. Une différence d'altitude importante pourrait être observée entre la nappe et le sol au niveau des crêtes topographiques. Cependant, il n'est
pas possible d’étayer cette supposition vu qu’aucun captage ou piézomètre n’est implanté dans ces formations calcaires.

Les caractéristiques hydrogéologiques de la Calestienne sont détaillées avec plus de précision dans les notices accompagnant les cartes voisines de Rochefort – Nassogne (Bonniver et al., 2013) et de Houyet – Han-sur-Lesse (Nogarède et al., 2011). Vu la faible importance de ces aquifères calcaires sur cette carte et le manque d’informations les concernant, leurs caractéristiques sont peu détaillées dans cette notice.

IV.3.1.2. Grès et shales de la bordure de la Calestienne et de l’Ardenne

Le reste des formations rocheuses présentes sur le domaine de la carte de Grupont – Saint-Hubert est à dominance schisto-gréseuse. Elles appartiennent aux différents étages du Dévonien inférieur ainsi qu’au Couvinien. Les propriétés hydrogéologiques de ces roches sont caractéristiques du Plateau Ardennais. Les formations rocheuses sont constituées majoritairement de schistes, de phyllades, de quartzites et de grès. Les schistes et les phyllades possèdent une perméabilité très faible et constituent généralement des aquicludes. Les grès bien que généralement plus perméables que les shales ont une perméabilité qui reste assez faible (par rapport à celle d’un calcaire karstifié par exemple) et ne constituent que des aquitards, voire des aquifères médiocres. L’eau souterraine "exploitable" se trouve dans deux zones distinctes :

- la zone altérée à proximité de la surface (nappe de manteau d'altération) ;
- les zones gréseuses ou quartzitiques fracturées (nappe de fissures).

L’altération physico-chimique des roches à proximité de la surface donne naissance, selon la lithologie de la roche mère à des sables, des siltz ou encore des argiles. Les produits d’altérations sableux constituent localement des zones aquifères de type "nappe de manteau d’altération". De nombreux puits anciens étaient creusés dans ces produits d’altération. Leur protection face à une pollution de surface est limitée, les rendant impropres pour la fourniture d’eau potabilisable. La majorité de ces puits anciens ont été remblayés. Il en subsiste cependant quelques-uns, qui servent généralement à un usage domestique.

La fracturation peut localement augmenter fortement la conductivité hydraulique du milieu souterrain. Si l’altération des phyllades et des schistes entraîne la formation d’argiles qui viennent colmater les fissures, celle des grès et des quartzites fournit des sables permettant la circulation de l’eau. Les formations gréseuses et quartzitiques fracturées constituent dès lors des aquifères localisés. Les zones fortement fracturées, à proximité d’une faille par exemple, constituent des zones d’écoulement préférentiel pour les eaux souterraines. Les
prises d'eau implantées dans les zones gréseuses fortement fracturées peuvent alors faire l'objet d'une exploitation plus rentable.

Les cours d'eau présents sur cette carte sont généralement drainants et influencent donc la piézométrie locale. Ils matérialisent une zone où le niveau piézométrique rejoint la topographie. Le sens d’écoulement des nappes est donc imposé par le réseau hydrographique qui impose le niveau de base hydrogéologique. Dans ces conditions et vu la faible perméabilité en profondeur des formations couvrant la majorité de l’étendue de cette carte, les bassins hydrogéologiques sont probablement analogues aux bassins hydrographiques. Les limites de bassins hydrogéologiques et hydrographiques peuvent cependant différer quelque peu, en fonction de la géologie locale (lithologie et structure).

Dans ce type de lithologies schisto-gréseuses, la nappe est souvent peu profonde par rapport à la topographie, y compris au niveau des crêtes topographiques, vu la faible perméabilité de ces formations. Néanmoins, un niveau piézométrique nettement plus profond (à plus de 30 mètres de la surface, voir Figure IV.4 et Figure IV.5) a été observé dans deux puits situés dans l’aquiclude à niveaux aquifères du Dévonien inférieur (« LES LOGES » et « CHEMIN DE LA CHAPELLE-FRAITE », Figure IV.3). Bien qu'aucune hétérogénéité lithologique locale n'ait été observée, ce niveau anormalement bas par rapport à la topographie pourrait être dû à une fraction plus calcaire du bedrock conduisant à une amélioration locale de la perméabilité. Des investigations complémentaires permettraient de confirmer ou d'infirmer cette hypothèse.

Figure IV.3 : Situation des puits « LES LOGES » et « CHEMIN DE LA CHAPELLE-FRAITE »
La piézométrie semble suivre des fluctuations saisonnières alternant une période de hautes eaux fin de l'hiver et une période de basses eaux fin de l'automne. La Figure IV.7 montre l'évolution de la piézométrie mesurée de 2000 à 2013 dans le puits « PAVILLON DE
CHASSE (Figure IV.6). Cet ouvrage est implanté dans l'aquiclude à niveaux aquifères du Dévonien inférieur. Un cycle annuel alternant des périodes de hautes et de basses eaux est visible. L'amplitude de ces fluctuations est de l'ordre de 2 m. Cependant, ce cycle n'est pas régulier et peut se décaler d'une année à l'autre, probablement en fonction du contexte météorologique annuel.

Figure IV.6 : Localisation du puits « PAVILLON DE CHASSE »

Figure IV.7 : Evolution piézométrique du puits « PAVILLON DE CHASSE » de 2000 à 2013
Certaines fluctuations de fréquence inférieure à l'année sont également visibles. Elles sont mises en évidence à la Figure IV.8, qui présente l'évolution de la profondeur de la nappe dans le puits « PAVILLON DE CHASSE » pour l'année 2004. Ces fluctuations sont probablement à mettre en relation avec la variation de l'eau utile, qui a été calculée pour cette même année 2004 (Figure IV.9) par la méthode de Thornthwaite (Thornthwaite & Matter, 1955).

Figure IV.8 : Evolution piézométrique du puits « PAVILLON DE CHASSE » en 2004

Figure IV.9 : Eau utile pour l'année 2004 et pour la station météorologique de Saint-Hubert
IV.4. COUPES HYDROGÉOLOGIQUES

Afin de mieux visualiser et de mieux comprendre la structure géologique et le comportement des nappes de la région de Grupont – Saint-Hubert, deux coupes hydrogéologiques ont été réalisées. Le trait de coupe A-A’, orienté NW-SE, passe du nord au sud par les localités de Grupont, Awenne, Mirwart et Arville (Figure IV.10).

La position de la coupe a été choisie pour illustrer au mieux la géologie (structures et lithologies) et l’hydrogéologie (unités hydrogéologiques) de la zone cartographiée à l’exception de la partie calcaire de la Calestienne. La proximité des puits ou des piézomètres pour lesquels il existe des données piézométriques est aussi un critère pour la localisation de l’axe de la coupe.

La profondeur de la surface piézométrique mesurée au niveau des crêtes topographiques ne dépasse généralement pas plus d’une dizaine de mètres. Le niveau piézométrique vient affleurer dans les fonds de vallées, les cours d’eau y étant en connexion directe avec la nappe aquifère. Vu sa faible profondeur sur toute l’étendue de la carte, le tracé hypothétique de la surface piézométrique n’a pas été dessiné sur la coupe hydrogéologique. Celle-ci devrait se confondre avec la topographie.
Figure IV.10 : Coupes hydrogéologiques de la planche 59/7-8
IV.5. CARACTÈRE LIBRE, SEMI-CAPTIF, CAPTIF DES NAPPES

Les différents types de nappes (Figure IV.11) peuvent être définis comme suit (Poehls & Smith, 2009) :

- **Nappe libre** : nappe n’étant pas mise sous pression par des roches imperméables sus-jacentes et étant en contact direct avec l’atmosphère du fait de la perméabilité du sol surmontant l’aquifère. Le niveau piézométrique est la limite supérieure de la zone de saturation où la pression absolue égale la pression atmosphérique et où la pression de l’eau est égale à zéro. Dans ces conditions, le niveau piézométrique peut fluctuer librement. La nappe peut se recharger lors des précipitations ou par écoulement latéral d’une nappe captive. Les nappes perchées sont un cas particulier de nappe libre ;

- **Nappe semi-captive** : nappe où le toit de l’aquifère est souvent constitué par une formation hydrogéologique semi-perméable. Dans certaines conditions hydrodynamiques favorables, il y a des différences de charge qui favorisent des échanges d’eau (ou de pression) avec l’aquifère superposé ou sous-jacent, appelées drainance. La formation est alors incorporée à un aquifère multicouche ;

- **Nappe captive** : nappe sans surface libre, donc soumise en tous points à une pression supérieure à la pression atmosphérique et dont la surface piézométrique est supérieure au toit de l’aquifère. Ces propriétés peuvent, dans certains cas, donner lieu à des puits artésiens ou jaillissants.

Figure IV.11 : Représentation schématique des différents types de nappes (d’après Dejonghe, 2007, modifié)
Sur la carte Grupont – Saint-Hubert, les nappes peuvent globalement être considérées comme libres pour une profondeur habituelle des forages (de l’ordre de 100 m). Ce caractère libre est représenté sur la carte des informations complémentaires et du caractère des nappes sur le document cartographique joint à cette notice.

Les zones gréseuses ou quartzitiques fracturées, même surmontées par des shales (régions à faibles pentages) sont en relation par le réseau des fractures avec la zone superficielle altérée. Les niveaux piézométriques analogues, mesurés dans des puits voisins mais crépinés uniquement dans les zones gréseuses profondes ou simplement creusés dans la zone altérée en surface, viennent argumenter en faveur d’une connexion entre les deux types de zones aquifères. Les zones gréseuses profondes et très localisées ne peuvent être considérées de manière systématique comme des aquifères captifs locaux. Cette précision est importante en terme de protection de ces petits aquifères profonds face à une pollution éventuelle en provenance de la surface. Ils forment en fait un continuum entre la nappe de manteau d’altération, superficielle, et une nappe de fissures, plus profonde. Il est cependant évident que le pente des couches, très variable mais généralement fort élevé, influence directement la distance entre la zone d’affleurement de la zone plus perméable et la profondeur à laquelle un puits peut la recouper (Figure IV.12). Néanmoins, comme les pentages sont souvent élevés dans la région, la couche aquifère affleure très souvent à proximité du puits, entraînant l’absence de captivité.

\[X = \frac{P}{\tan \alpha} \]

Figure IV.12 : Relation entre la distance du puits à la zone d'affleurement de la couche plus perméable et la profondeur à laquelle il recoupe celle-ci
IV.6. CARRIÈRES

Deux petites exploitations à ciel ouvert sont présentes au sud et au nord-est de la localité d’Arville. Ce sont les niveaux gréseux du Dévonien inférieur qui y sont exploités en vue d’une utilisation en maçonnerie.

Aucune influence sur l’hydrogéologie locale n’a été constatée au niveau de ces deux carrières.

Figure IV.13 : Situation des carrières sur la carte Grupont – Saint-Hubert
V. CADRE HYDROCHIMIQUE

Ce chapitre dresse un aperçu de la composition chimique des eaux souterraines dans la région de Grupont – Saint-Hubert, ainsi que des préoccupations principales liées à leur qualité.

V.1. CARACTÉRISTIQUES HYDROCHIMIQUES DES EAUX

Le résultat des analyses d’eau provenant des ouvrages de la carte Grupont – Saint-Hubert sont présentés dans les tableaux suivants. Les analyses proviennent essentiellement de la base de données physico-chimiques des captages d’eau souterraine, CALYPSO du SPW-DGO 3. Les données collectées concernent donc à la fois les ouvrages d’exploitation publique d’eau potable mais également les puits de particulier.

V.1.1. Aquiclude à niveaux aquifères du Dévonien inférieur

Cinq ouvrages disposent d’analyses chimiques en éléments majeurs au droit de l’aquiclude à niveaux aquifères du Dévonien inférieur sur la planche 59/7-8 (Figure V.1). Les résultats sont présentés dans le Tableau V.1.

Figure V.1 : Localisation des analyses chimiques dans l’aquiclude à niveaux aquifères du Dévonien inférieur
Tableau V.1 : Résultats des analyses chimiques pour l’aquiclude à niveaux aquifères du Dévonien inférieur

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Unités</th>
<th>Norme</th>
<th>LARGE FONTAINE</th>
<th>LE SARTAY 2</th>
<th>ROUTE CHAMPLON - FANGE AUX GETS</th>
<th>PLAINE HAYES</th>
<th>FANGE DE SARWET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’ouvrage</td>
<td></td>
<td></td>
<td>Drain</td>
<td>Puits foré</td>
<td>Drain</td>
<td>Drain</td>
<td>Source</td>
</tr>
<tr>
<td>X</td>
<td>211110</td>
<td>216110</td>
<td>223410</td>
<td>224870</td>
<td>225050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>79510</td>
<td>84040</td>
<td>81770</td>
<td>80140</td>
<td>78660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondeur (m)</td>
<td></td>
<td></td>
<td>s.o.</td>
<td>26</td>
<td>s.o.</td>
<td>s.o.</td>
<td>s.o.</td>
</tr>
<tr>
<td>pH</td>
<td>unité pH</td>
<td>6,5 à 9,5</td>
<td>5,6</td>
<td>7,1</td>
<td>5,5</td>
<td>5</td>
<td>5,5</td>
</tr>
<tr>
<td>Conductivité</td>
<td>µS/cm</td>
<td>2500</td>
<td>49</td>
<td>221</td>
<td>43</td>
<td>57</td>
<td>46</td>
</tr>
<tr>
<td>Dureté totale</td>
<td>°F</td>
<td>67,5</td>
<td>2,3</td>
<td>10,7</td>
<td>1,1</td>
<td>1,4</td>
<td>1,3</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/l Ca</td>
<td>270</td>
<td>3,4</td>
<td>27,5</td>
<td>2,8</td>
<td>3,5</td>
<td>1,6</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/l Na</td>
<td>200</td>
<td>2,9</td>
<td>6,9</td>
<td>2,6</td>
<td>3</td>
<td>2,9</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/l K</td>
<td>0,27</td>
<td>0,2</td>
<td>0,32</td>
<td>0,36</td>
<td>0,36</td>
<td>0,54</td>
</tr>
<tr>
<td>Magnésium</td>
<td>mg/l Mg</td>
<td>50</td>
<td>1,7</td>
<td>9,2</td>
<td>1,4</td>
<td>0,9</td>
<td>1,8</td>
</tr>
<tr>
<td>Fer (total dissous)</td>
<td>µg/l Fe</td>
<td>200</td>
<td><75</td>
<td>118</td>
<td><75</td>
<td><75</td>
<td><75</td>
</tr>
<tr>
<td>Chlorures</td>
<td>mg/l Cl</td>
<td>250</td>
<td>5,9</td>
<td>4,9</td>
<td><1</td>
<td>5,2</td>
<td>4,6</td>
</tr>
<tr>
<td>Nitrates</td>
<td>mg/l</td>
<td>50</td>
<td>4,5</td>
<td>0,3</td>
<td>6,8</td>
<td>6,7</td>
<td>7,1</td>
</tr>
<tr>
<td>Sulfates</td>
<td>mg/l</td>
<td>250</td>
<td>2,5</td>
<td>7,7</td>
<td>3,5</td>
<td>3,8</td>
<td>1,9</td>
</tr>
<tr>
<td>TAC</td>
<td>° F</td>
<td>1,1</td>
<td>9,3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hydrogénocarbonates</td>
<td>mg/l</td>
<td>13,3</td>
<td>113,5</td>
<td>12,2</td>
<td>12,2</td>
<td>12,2</td>
<td></td>
</tr>
</tbody>
</table>

Dans les drains, le pH est très acide (5-5,6). Cette caractéristique s’explique facilement en ce qui concerne le manteau d’altération, dans lequel les acides humiques provenant de la dégradation de la matière organique ainsi que la nature lithologique du substratum (aluminosilicates) font diminuer le pH. Une telle acidité en profondeur est cependant plus rare comme le montre la valeur de 7,1 mesurée au puits « LE SARTAY 2 ». La conductivité augmente en profondeur car les concentrations en ions augmentent du fait de la percolation de l’eau à travers le réseau des fissures. La conductivité, même en profondeur, reste néanmoins assez faible (< 250 µS/cm).
V.1.2. Aquitard du Dévonien inférieur

Les données hydrochimiques disponibles pour l’aquitard du Dévonien inférieur concernent la source « REVOZ 1 » et le puits privé « PUIDS HENNEAUX » (Figure V.2). Les analyses réalisées ont fourni les résultats présentés au Tableau V.2.

Figure V.2 : Localisation des analyses chimiques dans l'aquitard du Dévonien inférieur

Le pH est légèrement acide à neutre (6,5-7,1). On constate également que les nitrates disparaissent en profondeur, résultat éventuel de l'autoépuration des eaux souterraines lors de leur percolation en profondeur et en l'absence d'oxygène ou d'une non contamination des eaux souterraines. L'enrichissement en ions, particulièrement en fer, avec la profondeur est important (> 800 µg/l pour le « PUIDS HENNEAUX »).
Tableau V.2 : Résultats des analyses chimiques pour l’aquitard du Dévonien inférieur

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Unités</th>
<th>Norme</th>
<th>REVOZ 1</th>
<th>PUISTS HENNEAUX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’ouvrage</td>
<td>Source</td>
<td>Puits foré</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>211840</td>
<td>216756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>83870</td>
<td>85023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondeur (m)</td>
<td>s.o.</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date de prélèvement</td>
<td>24/11/2004</td>
<td>24/11/2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>unité pH</td>
<td>6,5 à 9,5</td>
<td>6,5</td>
<td>7,1</td>
</tr>
<tr>
<td>Conductivité électrique</td>
<td>µS/cm</td>
<td>2500</td>
<td>74</td>
<td>215</td>
</tr>
<tr>
<td>Dureté totale</td>
<td>°F</td>
<td>67,5</td>
<td>2,5</td>
<td>9,5</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/l Ca</td>
<td>270</td>
<td>6,5</td>
<td>21</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/l Na</td>
<td>200</td>
<td>4,2</td>
<td>9,3</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/l K</td>
<td>0,4</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Magnésium</td>
<td>mg/l Mg</td>
<td>50</td>
<td>2,3</td>
<td>10,2</td>
</tr>
<tr>
<td>Fer (total dissous)</td>
<td>µg/l Fe</td>
<td>200</td>
<td><12</td>
<td>810</td>
</tr>
<tr>
<td>Chlorures</td>
<td>mg/l Cl</td>
<td>250</td>
<td>6</td>
<td>8,4</td>
</tr>
<tr>
<td>Nitrates</td>
<td>mg/l NO3</td>
<td>50</td>
<td>4,1</td>
<td>0</td>
</tr>
<tr>
<td>Sulfates</td>
<td>mg/l SO4</td>
<td>250</td>
<td>1,8</td>
<td>20</td>
</tr>
<tr>
<td>TAC</td>
<td>°F</td>
<td>2,1</td>
<td>6,8</td>
<td></td>
</tr>
<tr>
<td>Hydrogénocarbonates</td>
<td>mg/l</td>
<td>25,6</td>
<td>83</td>
<td></td>
</tr>
</tbody>
</table>

V.1.3. Aquitard de l’Eifelien

Une analyse chimique a été réalisée dans un puits foré à 15 m de profondeur et situé au sud de la localité de Bure (Figure V.3). Les résultats sont repris dans le Tableau V.3.

Le pH des eaux pompées dans ce puits est neutre. La conductivité électrique est assez importante, de même que la concentration en calcium. Ceci est probablement dû au contexte localement plus calcaire des formations rocheuses de l’Eifelien.
Figure V.3 : Localisation du « PUITS LIEGEOIS » dans l’aquitard de l’Eifelien

Tableau V.3 : Résultats des analyses chimiques pour l’aquitard de l’Eifelien

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Unités</th>
<th>Norme</th>
<th>PUITS LIEGEOIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’ouvrage</td>
<td></td>
<td>Puits foré</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>213780</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td>86450</td>
</tr>
<tr>
<td>Profondeur (m)</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Date de prélèvement</td>
<td></td>
<td>24/11/2004</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>unité pH</td>
<td>6,5 à 9,5</td>
<td>7,4</td>
</tr>
<tr>
<td>Conductivité électrique</td>
<td>µS/cm</td>
<td>2500</td>
<td>300</td>
</tr>
<tr>
<td>Dureté totale</td>
<td>°F</td>
<td>67,5</td>
<td>15,1</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/l Ca</td>
<td>270</td>
<td>50,8</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/l Na</td>
<td>200</td>
<td>4,2</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/l K</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>Magnésium</td>
<td>mg/l Mg</td>
<td>50</td>
<td>5,9</td>
</tr>
<tr>
<td>Fer (total dissous)</td>
<td>µg/l Fe</td>
<td>200</td>
<td><12</td>
</tr>
<tr>
<td>Chlorures</td>
<td>mg/l Cl</td>
<td>250</td>
<td>8,7</td>
</tr>
<tr>
<td>Nitrates</td>
<td>mg/l NO3</td>
<td>50</td>
<td>18,2</td>
</tr>
<tr>
<td>Sulfates</td>
<td>mg/l SO4</td>
<td>250</td>
<td>21,1</td>
</tr>
<tr>
<td>TAC</td>
<td>°F</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Hydrogénocarbonates</td>
<td>mg/l HCO3</td>
<td></td>
<td>122</td>
</tr>
</tbody>
</table>
V.1.4. Aquiclude de l'Eifelien

Le puits « COLLEGE D’ALZON », situé à Bure (Figure V.4), a fait l'objet d'une analyse hydrochimique pour l'aquiclude de l'Eifelien. Il s'agit d'un puits privé d'une cinquantaine de mètres de profondeur. Le Tableau V.4 reprend le détail de cette analyse.

![Figure V.4 : Localisation du puits « COLLEGE D’ALZON » dans l’aquiclude de l'Eifelien](image)

Le pH est neutre (7,2), comme dans la majorité des puits profonds ayant fait l'objet d'une analyse hydrochimique. La conductivité électrique et la concentration en calcium sont importantes, comparées à celles mesurées dans la majorité des autres échantillons d'eau souterraines de la carte. Ceci s'explique probablement par la présence de calcaires à proximité de cette prise d'eau (implantée dans des schistes).
Tableau V.4 : Résultats des analyses chimiques pour l’aquiclude de l’Eifelien

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Unités</th>
<th>Norme</th>
<th>COLLEGE D’ALZON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d’ouvrage</td>
<td></td>
<td>Puits foré</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>213650</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>86900</td>
<td></td>
</tr>
<tr>
<td>Profondeur (m)</td>
<td></td>
<td>47,5</td>
<td></td>
</tr>
<tr>
<td>Date de prélèvement</td>
<td></td>
<td>24/11/2004</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>unité pH</td>
<td>6,5 à 9,5</td>
<td>7,2</td>
</tr>
<tr>
<td>Conductivité électrique</td>
<td>µS/cm</td>
<td></td>
<td>2500</td>
</tr>
<tr>
<td>Dureté totale</td>
<td>°F</td>
<td></td>
<td>67,5</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/l Ca</td>
<td>270</td>
<td>90,5</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/l Na</td>
<td>200</td>
<td>8,3</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/l K</td>
<td>200</td>
<td>1,5</td>
</tr>
<tr>
<td>Magnésium</td>
<td>mg/l Mg</td>
<td>50</td>
<td>11,1</td>
</tr>
<tr>
<td>Fer (total dissous)</td>
<td>µg/l Fe</td>
<td>200</td>
<td>28</td>
</tr>
<tr>
<td>Chlorures</td>
<td>mg/l Cl</td>
<td>250</td>
<td>27,8</td>
</tr>
<tr>
<td>Nitrates</td>
<td>mg/l NO3</td>
<td>50</td>
<td>24,5</td>
</tr>
<tr>
<td>Sulfates</td>
<td>mg/l SO4</td>
<td>250</td>
<td>42,5</td>
</tr>
<tr>
<td>TAC</td>
<td>°F</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Hydrogénocarbonates</td>
<td>mg/l HCO₃</td>
<td></td>
<td>280,6</td>
</tr>
</tbody>
</table>

V.1.5. Commentaires

Les analyses chimiques reprises ci-dessus donnent un premier aperçu des compositions chimiques des eaux souterraines susceptibles d’être rencontrées sur la carte Groupont – Saint-Hubert.

D’un point de vue général, les résultats permettent de distinguer les eaux souterraines contenues dans le réseau de fissures profondes de celles contenues dans la nappe d’altération. Avec, la profondeur :

- Le pH se rapproche de la neutralité, probablement du fait de la dégradation des acides humiques ou suite à la dissolution de zone plus carbonatée ;
- Généralement, les concentrations en nitrates diminuent, résultat éventuel de l’autoépuration naturelle des eaux souterraines ou d’une meilleure protection ;
- Les concentrations en fer et en manganèse augmentent.
La Figure V.5 reprend la classification hydrochimique des eaux souterraines sous forme d’un diagramme de Piper.

![Diagramme de Piper](image)

Figure V.5 : Classification hydrochimique des eaux souterraines selon un diagramme de Piper
(d’après Piper, 1944 ; Fetter, 2001)

La Figure V.6 reprend, sur le digramme Piper, la position des ouvrages analysés précédemment.

Toutes les eaux souterraines analysées sont de type bicarbonaté, à l’exception du drain « PLAINE HAYES » qui se classe dans le type chloruré et sulfaté. En ce qui concerne leur caractéristique ionique, la tendance va vers une dominance de calcium. Cette tendance calcique est plus marquée pour les eaux contenues dans les formations eiféliennes, du fait de la tendance plus carbonatée de ces roches. Les eaux prélevées dans le manteau d’altération ne s’individualisent pas nettement par leur contenu ionique. Celui-ci semble cependant moins riche en carbonates et en sulfates que les eaux provenant du bedrock non altéré.
Les nitrates font depuis plusieurs années l'objet de contrôles réguliers de la part des sociétés de distribution d'eau. La norme européenne est de 50 mg de NO₃ par litre d'eau au maximum. Pour protéger les eaux de surface et souterraines de la pollution par les nitrates, plusieurs "zones vulnérables" ont été désignées par arrêtés ministériels (Figure V.7). Cette désignation implique l'application d'un programme d'action précis dont les mesures ont été définies au travers du Programme de Gestion Durable de l'Azote en agriculture (PGDA). Pour plus d'informations, le site www.nitrawal.be peut être consulté.

V.2. PROBLÉMATIQUE DES NITRATES
Sur la Figure V.7, la partie nord-ouest de la planche 59/7-8 se trouve dans la zone vulnérable du « Sud Namurois » (Arrêté ministériel du 22 novembre 2012 portant extension de la zone vulnérable du territoire dit "Sud Namurois" [MB du 06/12/2012]).

Figure V.7 : Zones vulnérables aux nitrates arrêtées en Wallonie et teneurs moyennes en nitrates de 2008 à 2011 sur les ouvrages du réseau de surveillance du Service Public de Wallonie. Localisation de la carte Grupont – Saint-Hubert (source : SPW-DGO3, 2014. Etat des nappes d’eau souterraine de la Wallonie)

L'ensemble de ces 6 zones vulnérables aux nitrates reprennent la quasi-totalité des captages échantillonnés dépassant la norme des 50 mg/l et plus des deux tiers des captages dont la teneur en nitrate est comprise entre 25 et 50 mg/l.

V.2.1. Aquiclude à niveaux aquifères du Dévonien inférieur

Cette unité hydrogéologique, peu perméable et bien protégée par son manteau d’altération, montre de faibles teneurs en nitrates et rarement supérieures à 10 mg/l (Figure V.9). L’évolution au cours du temps est stable entre 2004 et 2013 avec même une tendance à la baisse pour la source « MIRWART ».

![Image](image.png)

Figure V.9 : Evolution de la teneur en nitrates pour 4 ouvrages de l’aquiclude à niveaux aquifères du Dévonien inférieur de 2004 à 2013
V.2.2. Aquitard du Dévonien inférieur

Pour cette unité, les concentrations en nitrates sont très faibles au niveau de la source « REVOZ 1 ». Ces concentrations sont comprises entre 4 et 6 mg/l et sont restées stables de 2004 à 2013, à l’exception d’un pic à 8 mg/l fin 2010 (Figure V.10).

![Figure V.10 : Evolution de la teneur en nitrates pour la source « REVOZ 1 » de 2004 à 2013](image)

V.2.3. Aquiclude de l’Eifelien

Parmi les trois unités hydrogéologiques disposant de mesures des teneurs en nitrates, c’est l’aquiclude de l’Eifelien qui montre les concentrations les plus élevées avec des valeurs allant de 27 à 49 mg/l pour la période de 1998 à 2002 (Figure V.11). Cependant, une tendance générale à la baisse s’observe entre 1998 et 2002. Ces concentrations importantes pourraient s’expliquer probablement par une moins bonne protection par les terrains superficiels.
V.3. QUALITÉ BACTÉRIOLOGIQUE

Parmi les autres paramètres régulièrement contrôlés au niveau des captages de distribution publique et des exploitations agricoles et industrielles, les analyses bactériologiques occupent une place importante.

Trois ouvrages sur la carte disposent d’analyses bactériologiques, deux sont implantés dans l’aquiclude à niveaux aquifères du Dévonien inférieur (« LES AWYS » et « MIRWART ») alors que le « PUIT LIEGEOIS » se trouve au droit de l’aquitard de l’Eifelien. Les résultats des analyses sont synthétisés au Tableau V.5.

Les pollutions dans l’eau sont généralement liées aux traitements d’épandage de tous ordres, principalement dans l’agriculture et aux déversements d’industries de fabrication et de conditionnement mais également de particuliers. Les puits domestiques non équipés correctement sont moins bien protégés contre les infiltrations de surface, c’est le cas du puits « LES AWYS » qui montre une concentration élevée en germes totaux.

Dans tous les cas, un traitement permet de rendre à l’eau une qualité appréciable.
V.4. LES PESTICIDES

En ce qui concerne les pesticides, les éléments fréquemment concernés par des pollutions appartiennent essentiellement à la famille des herbicides. Les herbicides permettent d’éliminer les plantes appelées communément "mauvaises herbes". L’une des propriétés recherchées pour un herbicide, outre sa sélectivité, est sa durée d’action après traitement, voilà pourquoi sa persistance dans l’environnement est parfois assez longue. D’autre part, les plus solubles d’entre eux sont susceptibles d’être entraînés, soit par ruissellement vers les cours d’eau, soit par infiltration lente en profondeur jusqu’aux nappes phréatiques. Certains herbicides sont l’apanage des agriculteurs, comme les produits dérivés du groupe chimique triazine (atrazine, simazine, propazine), qui sont des herbicides sélectifs utilisés principalement pour la culture du maïs, ou la bentazon, utilisée dans les cultures céréalières, de la pomme de terre, du lin, des haricots et petits pois,… D’autres, comme le diuron, sont plutôt utilisés par les particuliers (jardin et potager) et les communes (entretien des voiries et lieux publics).

Le Tableau V.6 reprend les pesticides les plus importants analysés dans divers ouvrages présents sur la carte. Tous sont implantés dans l’aquiclue à niveaux aquifères du Dévonien inférieur. Les analyses ne montrent aucun dépassement des normes de potabilité, le seuil de détectabilité n’étant souvent pas atteint. Ces quantités négligeables en pesticides peuvent s’expliquer par la faible urbanisation et le peu d’exploitations agricoles dans la région, de grandes étendues forestières occupant une grande partie du territoire.

Tableau V.5 : Résultats des analyses microbiologiques (avant traitement) pour quelques ouvrages de la région de Grupont – Saint-Hubert

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Unité</th>
<th>LES AWYS</th>
<th>MIRWART</th>
<th>PUISTS LIEGEOIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unité hydrogéologique</td>
<td>Aquiclue à niveaux</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aquifères du Dévonien</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inférieur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>20/01/2003</td>
<td>04/04/2001</td>
<td>19/05/2000</td>
<td></td>
</tr>
<tr>
<td>Coliformes fécaux</td>
<td>Colonies /100 ml</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Coliformes totaux</td>
<td>Colonies /100 ml</td>
<td>5</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Escherichia Coli</td>
<td>Colonies /100 ml</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Germes totaux à 22 °C</td>
<td>Colonies /ml</td>
<td>110</td>
<td>14</td>
<td>24</td>
</tr>
</tbody>
</table>

En ce qui concerne les pesticides, les éléments fréquemment concernés par des pollutions appartientient essentiellement à la famille des herbicides. Les herbicides permettent d’éliminer les plantes appelées communément "mauvaises herbes". L’une des propriétés recherchées pour un herbicide, outre sa sélectivité, est sa durée d’action après traitement, voilà pourquoi sa persistance dans l’environnement est parfois assez longue. D’autre part, les plus solubles d’entre eux sont susceptibles d’être entraînés, soit par ruissellement vers les cours d’eau, soit par infiltration lente en profondeur jusqu’aux nappes phréatiques. Certains herbicides sont l’apanage des agriculteurs, comme les produits dérivés du groupe chimique triazine (atrazine, simazine, propazine), qui sont des herbicides sélectifs utilisés principalement pour la culture du maïs, ou la bentazon, utilisée dans les cultures céréalières, de la pomme de terre, du lin, des haricots et petits pois,… D’autres, comme le diuron, sont plutôt utilisés par les particuliers (jardin et potager) et les communes (entretien des voiries et lieux publics).

Le Tableau V.6 reprend les pesticides les plus importants analysés dans divers ouvrages présents sur la carte. Tous sont implantés dans l’aquiclue à niveaux aquifères du Dévonien inférieur. Les analyses ne montrent aucun dépassement des normes de potabilité, le seuil de détectabilité n’étant souvent pas atteint. Ces quantités négligeables en pesticides peuvent s’expliquer par la faible urbanisation et le peu d’exploitations agricoles dans la région, de grandes étendues forestières occupant une grande partie du territoire.
Tableau V.6 : Teneurs en pesticides principaux (famille des herbicides) pour quelques captages de la région de Grupon – Saint-Hubert

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Unité</th>
<th>Norme</th>
<th>BOURSE FONTAINE</th>
<th>MIRWART</th>
<th>GERMAINVAUX</th>
<th>LARGE FONTAINE</th>
<th>PLAINE HAYES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td>30/06/2008</td>
<td>15/07/2009</td>
<td>30/06/2008</td>
<td>30/05/2011</td>
<td>23/06/2011</td>
</tr>
<tr>
<td>Atrazine</td>
<td>ng/l</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><25</td>
<td><25</td>
</tr>
<tr>
<td>Déséthyl atrazine</td>
<td>ng/l</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><25</td>
<td><25</td>
</tr>
<tr>
<td>Bentazone</td>
<td>ng/l</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><25</td>
<td><25</td>
</tr>
<tr>
<td>Simazine</td>
<td>ng/l</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><25</td>
<td><25</td>
</tr>
<tr>
<td>Chlortoluron</td>
<td>ng/l</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><25</td>
<td><25</td>
</tr>
<tr>
<td>Diuron</td>
<td>ng/l</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><25</td>
<td><25</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>ng/l</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><25</td>
<td><25</td>
</tr>
</tbody>
</table>

V.5. LES ÉLÉMENTS-TRACE METALLIQUES

Le Tableau V.7 montre les résultats d’analyses des ETM pour quelques ouvrages sur la carte Grupon – Saint-Hubert. Les principaux dépassements des normes de potabilité concernent le manganèse et, dans une moindre mesure, le plomb et le zinc. Un traitement des eaux permet néanmoins d’éliminer ces éléments indésirables.
Tableau V.7 : Teneurs en métaux lourds pour quelques ouvrages de la région de Grupont – Saint-Hubert

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Unité</th>
<th>Norme</th>
<th>LE SARTAY 2</th>
<th>PLAINE HAYES</th>
<th>REVOZ 1</th>
<th>PUITS LIEGEOIS</th>
<th>COLLEGE D’ALZON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unité hydrogéologique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aquiclude à niveaux aquifères du Dévonien inférieur</td>
<td>Aquiclude à niveaux aquifères du Dévonien inférieur</td>
<td>Aquitard du Dévonien inférieur</td>
<td>Aquitard de l’Eifelien</td>
<td>Aquiclude de l’Eifelien</td>
</tr>
<tr>
<td>Antimoine</td>
<td>μg/l</td>
<td>5</td>
<td>0</td>
<td><2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>μg/l</td>
<td>10</td>
<td>0</td>
<td><1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bore</td>
<td>μg/l</td>
<td>1000</td>
<td><6</td>
<td><80</td>
<td><6</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>Cadmium</td>
<td>μg/l</td>
<td>5</td>
<td>0</td>
<td><0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chrome (total)</td>
<td>μg/l</td>
<td>20</td>
<td>0</td>
<td><1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cuivre</td>
<td>μg/l</td>
<td>100</td>
<td>1</td>
<td><20</td>
<td>1</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Fer (total)</td>
<td>μg/l</td>
<td>200</td>
<td>118</td>
<td><75</td>
<td><12</td>
<td><12</td>
<td>28</td>
</tr>
<tr>
<td>dissous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganèse</td>
<td>μg/l</td>
<td>50</td>
<td>543</td>
<td><20</td>
<td>2</td>
<td>2</td>
<td>179</td>
</tr>
<tr>
<td>Mercure</td>
<td>μg/l</td>
<td>1</td>
<td>-</td>
<td><0,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nickel</td>
<td>μg/l</td>
<td>20</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plomb</td>
<td>μg/l</td>
<td>10</td>
<td>0</td>
<td><5</td>
<td>2</td>
<td>2</td>
<td>66</td>
</tr>
<tr>
<td>Selenium</td>
<td>μg/l</td>
<td>10</td>
<td>0</td>
<td><1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zinc</td>
<td>μg/l</td>
<td>200</td>
<td>32</td>
<td><20</td>
<td>3</td>
<td>454</td>
<td>63</td>
</tr>
</tbody>
</table>

V.6. ETAT DES MASSES D’EAU

En ce qui concerne le bon état chimique, la composition de l’eau souterraine mesurée aux différents points du réseau principal de surveillance, doit être telle que les concentrations de
polluants respectent les normes de qualité et les valeurs seuils inscrites à l’annexe XIV du Code de l’eau (Tableau V.8) :

Tableau V.8 : Valeurs seuils des paramètres chimiques intervenant dans la dégradation des masses d’eau souterraines

<table>
<thead>
<tr>
<th>Polluant</th>
<th>Norme ou Valeur seuil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrates</td>
<td>50 mg/l</td>
</tr>
<tr>
<td>Substances actives des pesticides, ainsi que les métabolites et produits de dégradation et de réaction pertinents</td>
<td>0,1 µg/l - 0,5 µg/l (total)</td>
</tr>
<tr>
<td>Ammonium</td>
<td>0,5 mg NH₄/l</td>
</tr>
<tr>
<td>Antimoine</td>
<td>5 µg/l</td>
</tr>
<tr>
<td>Arsenic</td>
<td>10 µg/l</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5 µg/l</td>
</tr>
<tr>
<td>Chlorures</td>
<td>150 mg/l</td>
</tr>
<tr>
<td>Chrome</td>
<td>50 µg/l</td>
</tr>
<tr>
<td>Cuivre</td>
<td>100 µg/l</td>
</tr>
<tr>
<td>2,6-dichlorobenzamide (BAM)</td>
<td>0,2 µg/l</td>
</tr>
<tr>
<td>Mercure</td>
<td>1 µg/l</td>
</tr>
<tr>
<td>Nickel</td>
<td>20 µg/l</td>
</tr>
<tr>
<td>Phosphore total</td>
<td>1,15 mg/l P₂O₅</td>
</tr>
<tr>
<td>Plomb</td>
<td>10 µg/l</td>
</tr>
<tr>
<td>Sulfates</td>
<td>250 mg/l</td>
</tr>
<tr>
<td>Trichloréthylène</td>
<td>10 µg/l</td>
</tr>
<tr>
<td>Tétrachloréthylène</td>
<td>10 µg/l</td>
</tr>
<tr>
<td>Zinc</td>
<td>200 µg/l</td>
</tr>
</tbody>
</table>

Sur cette base, l’état global des 33 masses d’eau souterraines de la Région wallonne vient d’être évalué pour la première fois, à l’aide des résultats accumulés entre 2005 et 2008 sur le réseau de surveillance DCE. En matière de nitrates, les résultats du survey nitrate (950 sites) permettent de conforter le diagnostic. Les masses d’eau classées en mauvais état l’ont été pour cause de nitrates (7), combinaison pesticides et nitrates (3), autres polluants (2) ou de prélèvements excessifs (1).

Les causes de la dégradation des eaux souterraines ont été regroupées comme suit :

L’agriculture, dont les pressions peuvent être diffuses ou ponctuelles, et qui provoquent des altérations en nitrates principalement et en pesticides secondairement ;

L’industrie (toutes catégories d’entreprises), dont les pressions sont considérées comme ponctuelles, et qui provoquent des altérations en macro-polluants, des risques d’introduction
de micro-polluants (métaux, composés organiques) et des risques quantitatifs (industrie extractive) ;

La collectivité réunit les ménages et les services liés à la population au sens large (approvisionnement en eau, assainissement, transports, urbanisation, espaces verts…). L’approvisionnement en eau peut provoquer des risques quantitatifs. Les autres secteurs cités peuvent émettre des macro-polluants et des pesticides de manière considérée comme diffuse.

Enfin, les sites contaminés, anciennes décharges et autres sites à réhabiliter sont réunis dans la force motrice dite historique. Il s’agit de sources de micropolluants vers les eaux souterraines, dont la propagation éventuelle est à contrôler.

L’impact chimique de l’agriculture demeure clairement la grande problématique pour les eaux souterraines en Wallonie ; toutefois aucune force motrice n’est à négliger. La Figure V.12 indique l’état des masses d’eau en fonction des causes de leur dégradation. En 2008, seulement 45 % des masses d’eau souterraines de Wallonie ont été jugées en bon état et sans risque de détérioration. Les plans de gestion de la directive cadre eau visent à amener cette proportion à 70% d’ici 2015.

Les masses d’eau concernées par la planche Grupont – Saint-Hubert, en 2008, étaient en bon état sans détériorations observées pour la majeure partie de la carte et en bon état avec risques qualitatifs pour la partie nord-ouest correspondant au Synclinal de Belvaux (Figure V.12).
VI. EXPLOITATION DES AQUIFÈRES

La planche Grupont – Saint-Hubert compte 103 ouvrages. Une grande partie des volumes extraits sont destinés à la distribution publique d’eau potable. Les autres captages sont principalement exploités pour un usage agricole, industriel, privé ou encore par certaines collectivités. La Figure VI.1 résume la répartition des ouvrages entre les différentes unités hydrogéologiques. C’est l’aquifère à niveaux aquifères du Dévonien inférieur qui est le plus fréquemment exploité sur le territoire de la carte Grupont – Saint-Hubert, cela étant plutôt dû à sa grande extension qu’à ses capacités aquifères.

Figure VI.1 : Répartition des ouvrages entre les différentes unités hydrogéologiques de la carte Grupont – Saint-Hubert

Le document cartographique joint à cette notice contient une carte thématique des volumes qui reprend les volumes pompés pour l’année 2012 ainsi que les moyennes par an de 2008 à 2012.

L’exploitation d’une prise d’eau souterraine est soumise à de nombreux aléas et donc peut être variable. Les contraintes techniques de l’ouvrage, l’activité économique liée à ce captage, l’évolution des conditions hydrogéologiques de la nappe sollicitée et les éventuelles pollutions, peuvent limiter les capacités de production. La présentation des volumes moyens prélevés sur la carte des volumes, correspond à la moyenne des années 2008 à 2012 encodées par l’administration (basés sur les déclarations des titulaires de prise d’eau). Ils
Exploitation des aquifères

... illustrent de manière plus réaliste l'exploitation des eaux souterraines sur la carte étudiée. Ces valeurs moyennes ne sont pas représentatives du potentiel d'exploitation ni de l'exploitation réelle des nappes mais reflètent l'importance d'un site d'exploitation pendant les cinq années considérées. Parmi ces dernières, il se peut que certaines d'entre elles soient des années sans prélèvement. A l'échelle de la Wallonie, les volumes soutirés dans les aquifères présents sur la planche 59/7-8 sont relativement faibles.

VI.1. VOLUMES PRÉLEVÉS POUR LA DISTRIBUTION PUBLIQUE

Tous les ouvrages concernés sont la propriété d'administrations communales. Il existe un historique des volumes prélevés (en m3 par an) par les différents captages pour les années 2007 à 2012 (Figure VI.2). C'est le drain « PLAINE HAYES » de l'Administration Communale de Saint-Hubert qui extrait les volumes les plus importants avec une moyenne de 170 000 m3 par an. Les autres captages sont nettement moins productifs avec une moyenne globale d'environ 30 000 m3 par an.

Figure VI.2 : Volumes prélevés entre 2007 et 2012 par les captages de distribution publique sur la carte Grupont – Saint-Hubert

VI.2. AUTRES VOLUMES CAPTÉS

Outre la distribution publique, les nappes aquifères peuvent être exploitées à plus petite échelle, souvent pour un usage industriel, agricole ou domestique. Nous ne disposons que...
de peu d’informations quant aux volumes pompés mais ceux-ci excèdent rarement les 2 000 m3 par an.

Le tourisme étant bien développé dans la région, bon nombre de camping et villages de vacances possèdent leur propre prise d’eau. Les volumes extraits n’excèdent pas les 3 000 m3 par an.
VII. PARAMÈTRES HYDROGÉOLOGIQUES

VII.1. INTRODUCTION

L’objectif des tests sur le terrain (essais de pompage, tests d'injection, traçages…) est souvent de définir les caractéristiques hydrauliques de l'aquifère à l'aide de méthodes d'interprétation basées sur des solutions analytiques simplifiées ou sur la calibration de modèles numériques. Les principaux paramètres caractérisant l'écoulement d'eau souterraine et le transport de solutés sont respectivement, la conductivité hydraulique (K), le coefficient d’emmagasinement spécifique (Sₜ), la porosité effective (ou efficace) de drainage (nₑ), la porosité effective de transport et la dispersivité longitudinale.

D’autres paramètres sont souvent cités dans les études consultées et parfois repris dans les notices des cartes :

- La transmissivité (T) exprime le débit d’eau qui s’écoule, pour une largeur unitaire, sur toute l’épaisseur d’un aquifère (de Marsily, 2004). Elle est l’intégration de la conductivité hydraulique (K) sur une épaisseur saturée donnée pour ramener le plus souvent l’écoulement à un processus 2D. Cette épaisseur est habituellement l’épaisseur totale de l’aquifère s’il s’agit d’un aquifère captif, et la hauteur d’eau saturée (très variable) s’il s’agit d’un aquifère libre ;

- Le coefficient d’emmagasinement est également une grandeur 2D intégrant le coefficient d’emmagasinement spécifique sur l’épaisseur de l’aquifère pour les nappes captives. Pour les nappes libres, le coefficient d’emmagasinement peut être approximé par la porosité effective (ou efficace) de drainage (nₑ).

Les valeurs des paramètres peuvent varier suivant les échelles d’investigation. On parlera de valeurs à l’échelle macroscopique pour les essais réalisés sur échantillons en laboratoire, par comparaison aux valeurs à l’échelle mégascopique relatives aux zones investiguées lors d’essais menés sur le terrain.

A titre indicatif, les Tableau VII.1 et Tableau VII.2 présentent quelques valeurs de conductivité hydraulique selon le type de terrain (roche meuble ou indurée, lithologie, degré de fissuration…).

Tableau VII.1 : Valeurs du coefficient de perméabilité en fonction de la granulométrie (Castany, 1998)

<table>
<thead>
<tr>
<th>K en m/s</th>
<th>10^-1</th>
<th>10^-2</th>
<th>10^-3</th>
<th>10^-4</th>
<th>10^-5</th>
<th>10^-6</th>
<th>10^-7</th>
<th>10^-8</th>
<th>10^-9</th>
<th>10^-10</th>
<th>10^-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulométrie homogène</td>
<td>gravier pur</td>
<td>sable pur</td>
<td>sable très fin</td>
<td>limons</td>
<td>argile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granulométrie variée</td>
<td>gravier grossuy</td>
<td>gravier et sable</td>
<td>sable et limons argileux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau VII.2 : Intervalles de valeurs indicatives pour la conductivité hydraulique de différentes lithologies (échelles macroscopique et mégascopique) (Dassargues, 2010)

<table>
<thead>
<tr>
<th>Lithologie</th>
<th>K (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granites et Gneiss</td>
<td>avec fissures</td>
</tr>
<tr>
<td></td>
<td>sans fissure</td>
</tr>
<tr>
<td>Basaltes</td>
<td>avec fissures</td>
</tr>
<tr>
<td></td>
<td>sans fissure</td>
</tr>
<tr>
<td>Quartzites</td>
<td>avec fissures</td>
</tr>
<tr>
<td></td>
<td>sans fissure</td>
</tr>
<tr>
<td>Shales (argilites)</td>
<td></td>
</tr>
<tr>
<td>Schistes (argilites schistosées)</td>
<td></td>
</tr>
<tr>
<td>Calcaires</td>
<td>karstifiés</td>
</tr>
<tr>
<td></td>
<td>avec fissures</td>
</tr>
<tr>
<td></td>
<td>sans fissure</td>
</tr>
<tr>
<td>Grès</td>
<td>avec fissures</td>
</tr>
<tr>
<td></td>
<td>sans fissure</td>
</tr>
<tr>
<td>Craies</td>
<td></td>
</tr>
<tr>
<td>Tufs volcaniques</td>
<td></td>
</tr>
<tr>
<td>Graviers</td>
<td></td>
</tr>
<tr>
<td>Sables</td>
<td></td>
</tr>
<tr>
<td>Silts, limons</td>
<td></td>
</tr>
<tr>
<td>Argiles et limons</td>
<td></td>
</tr>
</tbody>
</table>

Le sous-sol, constitué de terrains meubles ou de roches consolidées, peut aussi être caractérisé par ses porosités. Pour l’écoulement des eaux souterraines, seule la porosité effective (ou efficace) de drainage (nₑ), est considérée car sa valeur tient lieu de coefficient d’emmagasinemenet en nappe libre. A titre indicatif, le Tableau VII.3 reprend quelques intervalles de valeurs de porosité totale et porosité effective de drainage (nₑ) en fonction du type de roches. Comme pour la conductivité hydraulique, ce paramètre est dépendant de l’échelle d’investigation (laboratoire – terrain).
Tableau VII.3 : Intervalles de valeursindicatives pour la porosité (n) et la porosité effective de drainage (n_e) de différentes lithologies (échelles macroscopique et mégascopique) (Dassargues, 2010)

<table>
<thead>
<tr>
<th>Lithologie</th>
<th>n (%)</th>
<th>n_e (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granites et Gneiss</td>
<td>0,02 - 2</td>
<td>0,1 – 2*</td>
</tr>
<tr>
<td>Quartzites</td>
<td>0,5 – 2</td>
<td>0 – 2*</td>
</tr>
<tr>
<td>Shales (argilites)</td>
<td>0,1 – 7,5</td>
<td>0,1 – 1*</td>
</tr>
<tr>
<td>Schistes (argilites schistosées)</td>
<td>0,1 – 7,5</td>
<td>0,1 – 2*</td>
</tr>
<tr>
<td>Calcaires et Dolomies primaires</td>
<td>0,5 - 15</td>
<td>0,1 – 14*</td>
</tr>
<tr>
<td>Dolomies secondaires</td>
<td>10 - 30</td>
<td>5 – 15*</td>
</tr>
<tr>
<td>Craies</td>
<td>0,5 - 45</td>
<td>0,5 – 15*</td>
</tr>
<tr>
<td>Grèses, Psammites</td>
<td>3 – 38</td>
<td>3 – 25</td>
</tr>
<tr>
<td>Tufs volcaniques</td>
<td>30 -40</td>
<td>5 – 15</td>
</tr>
<tr>
<td>Graviers</td>
<td>15 - 25</td>
<td>5 – 25</td>
</tr>
<tr>
<td>Sables</td>
<td>15 - 35</td>
<td>5 – 25</td>
</tr>
<tr>
<td>Silts</td>
<td>30 - 45</td>
<td>5 – 15</td>
</tr>
<tr>
<td>Argiles et limons</td>
<td>40 - 70</td>
<td>0,1 – 3</td>
</tr>
</tbody>
</table>

*dépendant de la fissuration

VII.2. PARAMÈTRES D’ÉCOULEMENT

Peu de données sont disponibles sur la carte Grupont – Saint-Hubert, seul un essai de pompage a été réalisé dans le puits « BOIS COLLE » appartenant à l’Administration Communale de Tellin entre août et septembre 1980 (Vrancken et Panuccio, 1980). L’ouvrage, est situé au sud de Tellin, au lieu-dit “Sur li Stappe” (Figure VII.1). Ce puits, profond de 90 m, est foré dans l’Aquiclude à niveaux aquifères du Dévonien inférieur.

Figure VII.1 : Situation du puits « BOIS COLLE » au sud de Tellin
Le test a été réalisé sous la forme d'un pompage par paliers ; les débits allant de 3,5 à 10,35 m³/h. Le débit critique du puits n'a jamais été atteint au cours de ce test. Pour chaque palier, la transmissivité a été calculée par la méthode de Jacob ainsi que par la méthode de Theis pour la remontée qui a suivi le dernier palier. Les transmissivités calculées vont de $1,55 \times 10^{-4}$ à $4,39 \times 10^{-4}$ m²/s pour la descente et de $0,88 \times 10^{-4}$ m²/s pour la remontée. En tenant compte d'une hauteur de crépine de 66 m, la conductivité hydraulique est de $2,3 \times 10^{-6}$ à $6,7 \times 10^{-6}$ m/s pour la descente et $1,3 \times 10^{-6}$ m/s pour la remontée.

VII.3. PARAMÈTRES DE TRANSPORT

A ce jour, aucune investigation de terrain n'a encore été réalisée sur le domaine de cette carte afin de déterminer des valeurs pour les paramètres de transport.
VIII. ZONES DE PROTECTION

VIII.1. CADRE LEGAL

Suite au développement économique, les ressources en eaux souterraines sont de plus en plus sollicitées et en même temps soumises à des pressions environnementales qui menacent leur qualité.

Afin de limiter les risques de contamination des captages, des périmètres de prévention doivent être mis en place. La législation wallonne\(^1\) définit 4 niveaux de protection à mesure que l'on s'éloigne du captage (Figure VIII.1) : zones de prise d'eau (Zone I), de prévention (Zones IIa et IIb) et de surveillance (Zone III).

![Figure VIII.1 : Zones de protection en Région Wallonne (source : SPW-DGO3 (2014). Etat des nappes d’eau souterraine de la Wallonie)](image)

- Zone de prise d’eau ou zone I

La zone de prise d’eau est délimitée par la ligne située à 10 m des limites extérieures des installations en surface strictement nécessaires à la prise d’eau. À l’intérieur de la zone de prise d’eau, seules les activités en rapport direct avec la production d’eau sont tolérées.

• Zones de prévention rapprochée et éloignée ou zones Ila et IIb

L’aire géographique dans laquelle le captage peut être atteint par tout polluant sans que celui-ci ne soit dégradé ou dissous de façon suffisante et sans qu'il ne soit possible de le récupérer de façon efficace, s'appelle la "zone de prévention".

Une zone de prévention est déterminée en nappe libre. En nappe captive, une telle zone peut être déterminée (à la demande de l'exploitant ou imposée par les autorités régionales).

La zone de prévention d'une prise d'eau souterraine en nappe libre est scindée en deux sous-zones :

- la zone de prévention rapprochée (zone Ila) : zone comprise entre le périmètre de la zone I et une ligne située à une distance de l'ouvrage de prise d'eau correspondant à un temps de transfert de l'eau souterraine jusqu'à l'ouvrage égal à 24 heures dans le sol saturé.

 A défaut de données suffisantes permettant de définir la zone Ila selon le critère des temps de transfert, la législation suggère de délimiter la zone Ila par une ligne située à une distance horizontale minimale de 35 mètres à partir des installations de surface, dans le cas d'un puits, et par deux lignes situées à 25 mètres au minimum de part et d’autre de la projection en surface de l’axe longitudinal dans le cas d’une galerie ou d’un drain. En milieu karstique, tous les points préférentiels de pénétration (doline et pertes) dont la liaison avec le captage est établie sont classés en zone Ila.

- la zone de prévention éloignée (zone IIb) : zone comprise entre le périmètre extérieur de la zone Ila et une ligne située à une distance de l'ouvrage de prise d'eau correspondant à un temps de transfert de l'eau souterraine jusqu'à l'ouvrage égal à 50 jours dans le sol saturé.

 A défaut de données suffisantes permettant la délimitation de la zone IIb suivant les principes définis ci-avant, le périmètre de cette zone est distant du périmètre extérieur de la zone IIa de :

 - 100 mètres pour les formations aquifères sableuses ;
 - 500 mètres pour les formations aquifères graveleuses ;
 - 1000 mètres pour les formations aquifères fissurés ou karstiques.

• Zone de surveillance ou zone III

Une zone de surveillance peut être déterminée pour toute prise d'eau. Cette zone englobe tout ou partie de la zone d'alimentation du point de captage.
Les limites de ces zones peuvent coïncider avec des repères ou des limites topographiques naturels ou artificiels, rendant leur identification et leur gestion sur le terrain plus aisée.

VIII.2. MESURES DE PROTECTION

La Société Publique de Gestion de l'Eau assure la gestion financière des dossiers concernant la protection des eaux potabilisables distribuées par réseaux, par le biais de contrats de service passés avec les producteurs d'eau. Pour financer les recherches relatives à la délimitation des zones de prévention et indemniser tout particulier ou toute société dont les biens doivent être mis en conformité avec la législation, une redevance est prélevée sur chaque m³ fourni par les sociétés de distribution d'eau.

La DGARNE met à la disposition du public un site Internet où sont exposées les différentes étapes nécessaires à la détermination des zones de prévention et de surveillance en Région wallonne (http://environnement.wallonie.be/de/eso/atlas).

Un autre site a également été développé, permettant grâce à une recherche rapide par commune ou par producteur d'eau, de visualiser, soit la carte et le texte des zones officiellement désignées par arrêté ministériel, soit la carte de chaque zone actuellement soumise à l'enquête publique (http://environnement.wallonie.be/zones_prevention/).

VIII.3. ZONES DE PRÉVENTION AUTOUR DES CAPTAGES

L'ensemble des captages qui sont destinés à une distribution publique d'eau ou à un usage alimentaire devra, dans un futur plus ou moins proche, faire l'objet d'une étude de délimitation des zones de prévention rapprochée et éloignée. Cette étude sera proposée à la Direction des Eaux Souterraines de la DGARNE et approuvée par arrêté ministériel, après

3 SPGE, instituée par le décret du 15 avril 1999
éventuelle révision, par signature du ministre wallon en charge de l'environnement. Les zones de prévention qui doivent être définies sont symbolisées, sur la carte principale accompagnant cette notice, par un triangle vide centré sur les captages concernés.

VIII.3.1. Zones de prévention arrêtées

Sur la planche 59/7-8, trois zones de prévention approuvées par arrêté ministériel sont présentes, elles sont détaillées au Tableau VIII.1 et localisées à la Figure VIII.2.

Tableau VIII.1 : Zones de prévention approuvées par arrêté ministériel sur la planche 59/7-8

<table>
<thead>
<tr>
<th>Code de la zone</th>
<th>Nom des captages</th>
<th>Date de l'arrêté</th>
<th>Publication au moniteur belge</th>
<th>url arrêté ministériel</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC_TELLIN02</td>
<td>Mirwart</td>
<td>13/03/2008</td>
<td>21/04/2008</td>
<td>http://environnement.wallonie.be/legis/EAU/easou152.htm</td>
</tr>
</tbody>
</table>

Figure VIII.2 : Situation des zones de prévention à définir ou arrêtées sur la planche Grupont – Saint-Hubert
VIII.3.2. Zones de prévention à définir

Les zones à définir sont symbolisées sur la carte hydrogéologique par un triangle vide, tracé autour des captages toujours exploités pour la distribution publique d’eau. Le Tableau VIII.2 synthétise les ouvrages concernés, ils sont localisés à la Figure VIII.2.

<table>
<thead>
<tr>
<th>EXPLOITANT</th>
<th>NOM</th>
<th>coord. Lambert X</th>
<th>coord. Lambert Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE COMMUNAL DE TELLIN</td>
<td>BOIS COLLE</td>
<td>210720</td>
<td>84380</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>BOURSE FONTAINE</td>
<td>218000</td>
<td>84400</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>CAPTAGE BOULARD</td>
<td>224264</td>
<td>78822</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>CAPTAGE LEBLICQ</td>
<td>224835</td>
<td>78850</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>FANGE DE SARWET</td>
<td>225050</td>
<td>78660</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>GERMAINVAUX</td>
<td>218882</td>
<td>81760</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>PARC OU FONTAINE ST HUBERT</td>
<td>222550</td>
<td>80200</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>PARFONDRY</td>
<td>216700</td>
<td>82600</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>PLAINE HAYES</td>
<td>225010</td>
<td>80228</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>ROUTE CHAMPLON-FANGE AUX GETS</td>
<td>223390</td>
<td>81830</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>SARTAY</td>
<td>216210</td>
<td>84440</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>SCAYRE OU LE PETIT MACON</td>
<td>221590</td>
<td>78260</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE SAINT-HUBERT</td>
<td>SEPT FONTAINE</td>
<td>222640</td>
<td>80390</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE LIBIN</td>
<td>HALVOYMONT</td>
<td>210851</td>
<td>79813</td>
</tr>
<tr>
<td>SERVICE COMMUNAL DE LIBIN</td>
<td>LES LOGES</td>
<td>213930</td>
<td>78290</td>
</tr>
</tbody>
</table>
IX. MÉTHODOLOGIE D’ÉLABORATION DE LA CARTE HYDROGÉOLOGIQUE

Le présent chapitre décrit brièvement les principales sources d'informations géologiques, hydrologiques et hydrogéologiques disponibles pour la région de Grupont – Saint-Hubert et la méthodologie utilisée pour la construction de la carte hydrogéologique.

Les données collectées sont encodées dans une base de données structurée et mises en cartes.

IX.1. SOURCES DE DONNÉES

IX.1.1. Données géologiques

Les données géologiques proviennent des descriptions de forages, disponibles principalement auprès du Service Géologique de Belgique, des foreurs et à partir d'études géologiques et hydrogéologiques diverses.

Les unités hydrogéologiques sont directement dérivées de la carte géologique de Forir (1900), elles ont été définies sur base des propriétés hydrodynamiques des différentes lithologies.

Au sud de Tellin, un site a fait l'objet d'investigations géophysiques dans le cadre du forage du puits « BOIS COLLE » (UCL, 1980). Cette zone de prospection géophysique a été localisée sur la carte hydrogéologique.

IX.1.2. Données météorologiques et hydrologiques

Les informations proviennent de la DCENN en ce qui concerne la station de jaugeage L6320 (X : 215042, Y : 87185) sur la Lhomme.

La station climatique 414 (X : 224047, Y : 81302) située à Saint-Hubert appartient à l'IRM.
IX.1.3. Données hydrogéologiques

IX.1.3.1. Localisation des ouvrages et sources
Au total, 103 ouvrages ont été encodés dans la banque de données. Ces ouvrages comprennent 17 puits de distribution publique d'eau potable, 17 drains, 47 puits de particuliers ou d'industries, 1 piézomètre et 21 sources. Ces données proviennent des communes, d'agriculteurs, de particuliers et de la base de données des captages d'eau souterraine du SPW-DGO 3 (DixSous).

IX.1.3.2. Données piézométriques
Les données piézométriques proviennent des mesures piézométriques effectuées dans le cadre de la réalisation de cette carte ainsi que du réseau piézométrique de la Direction des Eaux souterraines (pour le puits « PAVILLON DE CHASSE »).

Il y a 2637 valeurs disponibles sur 15 ouvrages.

IX.1.3.3. Données hydrochimiques
Les données hydrochimiques ont, pour la plupart, été fournies par la banque de données CALYPSO du SPW. Environ 900 valeurs de paramètres chimiques ont été encodées dans la banque de données au droit de 17 ouvrages.

IX.2. ENCODAGE DANS UNE BASE DE DONNÉES
De telles données, aussi complexes et plus ou moins abondantes, nécessitent une organisation structurée de manière à optimaliser leur stockage, leur gestion et leur mise à jour. Ainsi une base de données hydrogéologiques géorelationnelle a été développée (Gogu, 2000, Gogu et al., 2001). Cette première version de la base de données BD HYDRO a été régulièrement améliorée.

Dans un souci d'homogénéité entre les équipes et d'autres institutions (dont l'administration wallonne, DGARNE), la base de données a été révisée. Le but est de créer un outil de travail commun et performant, répondant aux besoins des spécialistes impliqués dans la gestion des eaux souterraines. Les données hydrogéologiques dispersées géographiquement devaient être disponibles dans une seule base de données centralisée.

Ainsi les données détaillées de l'hydrochimie, de la piézométrie, des volumes exploités, des paramètres d'écoulement et de transport, de géologie telles que les descriptions de log de forage et d'autres données administratives ou autre sont stockées dans la BD HYDRO qui se
trouve à la DGARNE⁴. Ces données peuvent être demandées à la Région qui décide de leur accessibilité au cas par cas. L’ensemble des données collectées est encodé dans la base de données géorelacionnelle, BD HYDRO (Wojda et al., 2005). Elle regroupe toutes les informations disponibles en matière d’hydrogéologie en Région wallonne. Parmi les nombreuses et diverses données de la BD HYDRO on trouve des informations relatives à la localisation des prises d’eau (puits, sources, piézomètres,…), leurs caractéristiques géologiques et techniques, ainsi que des données sur la piézométrie, la qualité physico-chimique des eaux souterraines, les volumes prélevés… Les divers tests (diagraphies, essais de pompage, essais de traçage, prospection géophysique) sont également encodés dans la BD HYDRO. Elle est également enrichie avec les informations sur les études, rapports et autres documents hydrogéologiques écrits. Ces renseignements se présentent sous la forme de métadonnées.

IX.2.1. Construction de la carte hydrogéologique

Le projet cartographique est développé sous ESRI-ArcGIS. Toutes les données collectées sont structurées dans une GeoDataBase (GDB). Les couches d’informations qui composent cette base de données sont ensuite intégrées au projet cartographique.

IX.3. PRÉSENTATION DU POSTER A0

La carte hydrogéologique se compose de plusieurs éléments :

- la carte hydrogéologique principale au 1/25 000 ;
- les cartes thématiques au 1/50 000 :
 - carte des informations complémentaires et des caractères des nappes ;
 - carte des volumes d’eau prélevés ;
- les coupes hydrogéologiques ;
- le tableau de correspondance entre la géologie et l’hydrogéologie ;
- la carte de Belgique (au 1/5 000 000) où est localisée la planche étudiée.

IX.3.1. Carte hydrogéologique principale

La carte principale comprend plusieurs couches d’information :

- le fond topographique de la carte IGN au 1/10 000 ;

• le réseau hydrographique ;
• les unités hydrogéologiques ;
• les failles ;
• la localisation des points d’eau constitués par :
 o des puits des sociétés de distribution d’eau ;
 o des puits de sociétés industrielles ;
 o des puits privés exploités et déclarés au Service Public de Wallonie ;
 o des puits non exploités, mais équipés d’une pompe ;
 o des sources exploitées ou non ;
 o des puits d’accès aux drains ;
 o des piézomètres, ces derniers étant considérés comme tout point d’accès à la nappe, non exploité (forages de petit diamètre, puits non équipés) ;
• une station limnimétrique ;
• une station climatique ;
• les cotes piézométriques ponctuelles dans les unités hydrogéologiques rencontrées, avec la date de la mesure ;
• un trait localisant le tracé des coupes hydrogéologiques ;
• Les zones de prévention IIa et IIb arrêtés par le Gouvernement Wallon ;
• les points de captage en attente de la définition de leur zone de prévention.

IX.3.2. Carte des informations complémentaires et des caractères des nappes

• La « carte des informations complémentaires et du caractère des nappes » présente le caractère (libre, captif, semi-captif) des principaux aquifères et localise les différents sites au droit desquels des données quantitatives ou qualitatives sont disponibles (analyses chimiques, essais de pompage,…) ainsi que d’autres informations complémentaires, entre autre, les zones de prospection géophysiques et les zones vulnérables au nitrates.

IX.3.3. Carte des volumes prélevés

Cette carte situe l’ensemble des ouvrages recensés et existants en 2014 sur l’étendue de la carte, en discernant :

• les ouvrages (puits, piézomètres, sources, drains,…) différenciés selon l’aquifère qu’ils sollicitent. Les couleurs des symboles utilisés sont en relation avec la couleur de la nappe sollicitée ;
Méthodologie d’élaboration de la carte hydrogéologique

IX.3.4. Tableau de correspondance ‘Géologie – Hydrogéologie’

Le tableau lithostratigraphique reprend la liste des différentes formations géologiques et unités hydrogéologiques susceptibles d’être rencontrées sur l’étendue de la carte. La description lithologique des formations géologiques fait référence à la carte géologique de Forir (1900).

IX.3.5. Coupes hydrogéologiques

Parmi les éléments présentés sur le poster de la carte hydrogéologiques figurent deux coupes hydrogéologiques, l’une sans exagération verticale l’autre avec hauteurs exagérées d’un facteur X5. Elles permettent de comprendre le contexte géologique et hydrogéologique de la région. Sur ces coupes ont été ajoutées des informations sur les niveaux d’eau souterraine.

IX.3.6. Avertissement

Les cartes hydrogéologiques ont pour objectif de répondre aux besoins de toute personne, société ou institution concernée par la problématique et la gestion des ressources en eau tant au niveau quantitatif que qualitatif et de mettre à disposition une documentation synthétique et aisément accessible relative à l’hydrogéologie d’une région.

Le poster et la notice fournis ne prétendent pas à une précision absolue en raison de la non-exhaustivité des données, de l’évolution de celles-ci et des interprétations nécessaires à leur établissement. Ils n’ont pour but que d’aider les hydrogéologues à prévoir le contexte général qu’ils peuvent rencontrer et l’ampleur des études nécessaires. La carte et la notice constituent un instrument de synthèse et d’orientation et ne dispensent en aucune façon de recherches complémentaires en fonction de sites particuliers et de projets définis.

• les volumes déclarés pour l’année 2012 pour les ouvrages exploités par les sociétés de distribution publique d’eau potable représentés par des pastilles rouges de diamètre proportionnel aux débits captés ;
• les volumes déclarés pour l’année 2012 pour les puits privés exploités par des particuliers ou des industries représentées par des pastilles vertes de diamètre proportionnel aux débits captés ;
X. RÉFÉRENCES

Dassargues, A. (2010) : Hydrogéologie, Notes de cours, Université de Liège, non publié

Références

Forir, M.H. (1900) : Carte géologique de Belgique au 1/40 000, planche n°195 Grupont – Saint-Hubert

Piper, A.M. (1944) : A graphic procedure in the geochemical interpretation of water analyses, Transactions, American Geophysical Union, 25, 914-923

Servais, A. (2006) : Contribution à l’étude hydrogéologique des calcaires givetiens du bassin versant de la Lesse, mémoire de fin d’études, DSTE, Université Libre de Bruxelles

Stainier, M.X. (1895) : Carte géologique de Belgique au 1/40 000, planche n°186 Rochefort – Nassogne

Thornthwaite, C.W. & Mather, J.R. (1955) : The water balance, Publication 8, 1-86, Centeron N.J., Laboratory of Climatology

Wojda, P.; Dachy, M.; Popescu, C.; Ruthy, I.; Gardin, N.; Brouyère, S. et Dassargues, A. (2005) : Appui à la conception de la structure, à l'interfaçage et à l'enrichissement de la base de données hydrogéologiques de la Région wallonne, *Convention subsidiée par Service public de Wallonie, DGARNE – Université de Liège*
ANNEXE 1 : LISTE DES ABRÉVIATIONS

DGARNE : Service public de Wallonie (SPW). Direction Générale de l'Agriculture, des Ressources naturelles et de l'Environnement. DGO3

Avenue Prince de Liège, 15 à 5100 JAMBES

http://environnement.wallonie.be/

Direction des Eaux Souterraines

Depuis le 1er août 2008, Ministère wallon de l'Equipement et des Transports et le Ministère de la Région wallonne ont fusionné pour donner naissance au Service public de Wallonie. Ainsi la DGARNE est reprise dans la Direction générale opérationnelle 3 (DGO3) dont les domaines de compétences sont l'Agriculture, les Ressources naturelles et l'Environnement. La Direction des Eaux Souterraines est incluse dans le Département de l'Environnement et de l'Eau.

DCENN : Direction des Cours d'Eau Non Navigables

IRM : Institut Royal Météorologique, Section Climatologie.

Avenue Circulaire, 3 à 1180 BRUXELLES

http://www.meteo.oma.be/IRM-KMI/

SGB : Service Géologique de Belgique.

Département VII de l'Institut royal des Sciences Naturelles de Belgique

Rue Jenner, 13 à 1000 BRUXELLES

http://www.sciencesnaturelles.be/geology

TAC : Titre Alcalimétrique Complet. Le TAC est lié à la concentration en carbonates et en hydrogénocarbonates.

m : mètre

s : seconde
ANNEXE 2 : TABLE DES ILLUSTRATIONS

Figure I.1 : Localisation de la carte Grupont – Saint-Hubert (planchette IGN 59/7-8 au 1/25.000) 3
Figure II.1 : Contexte géomorphologique général de la Belgique, situation de la Calestienne et de la carte 59/7-8 Grupont – Saint-Hubert .. 4
Figure II.2 : Réseau hydrographique et bassins versants de la carte 59/7-8 Grupont – Saint-Hubert .. 6
Figure III.1 : Localisation de la planche 59/7-8 Grupont – Saint-Hubert sur la carte géologique en Wallonie .. 8
Figure III.2 : Carte structurale simplifiée de la planche 59/7-8 Grupont – Saint-Hubert .. 16
Figure IV.1 : différents types de porosité dans les roches meubles et cohérentes .. 18
Figure IV.2 : Localisation des phénomènes karstiques dans le Synclinal de Belvaux ... 23
Figure IV.3 : Situation des puits « LES LOGES » et « CHEMIN DE LA CHAPELLE-FRAITE » 25
Figure IV.4 : Evolution piézométrique du puits « LES LOGES » d’avril à décembre 2004 26
Figure IV.5 : Evolution piézométrique du puits « CHEMIN DE LA CHAPELLE-FRAITE » d’avril à décembre 2004 .. 26
Figure IV.6 : Localisation du puits « PAVILLON DE CHASSE » .. 27
Figure IV.7 : Evolution piézométrique du puits « PAVILLON DE CHASSE » de 2000 à 2013 27
Figure IV.8 : Evolution piézométrique du puits « PAVILLON DE CHASSE » en 2004 28
Figure IV.9 : Eau utile pour l’année 2004 et pour la station météorologique de Saint-Hubert 28
Figure IV.10 : Coupes hydrogéologiques de la planche 59/7-8 .. 30
Figure IV.11 : Représentation schématique des différents types de nappes .. 31
Figure IV.12 : Relation entre la distance du puits à la zone d’affleurement de la couche plus perméable et la profondeur à laquelle il recoupe celle-ci ... 32
Figure IV.13 : Situation des carrières sur la carte Grupont – Saint-Hubert .. 33
Figure V.1 : Localisation des analyses chimiques dans l’aquiclude à niveaux aquifères du Dévonien inférieur ... 34
Figure V.2 : Localisation des analyses chimiques dans l’aquitard du Dévonien inférieur 36
Figure V.3 : Localisation du « PUISTS LIEGEOIS » dans l’aquitard de l’Eifelien .. 38
Figure V.4 : Localisation du puits « COLLEGE D’ALZON » dans l’aquiclude de l’Eifelien 39
Figure V.5 : Classification hydrochimique des eaux souterraines selon un diagramme de Piper 41
Figure V.6 : Analyses hydrochimiques intégrées dans le diagramme de Piper ... 42
Figure V.7 : Zones vulnérables aux nitrates arrêtées en Wallonie et teneurs moyennes en nitrates de 2008 à 2011 sur les ouvrages du réseau de surveillance du Service Public de Wallonie. Localisation de la carte Grupont – Saint-Hubert ... 43
Figure V.8 : Situation des ouvrages disposant de chroniques des teneurs en nitrates sur la planche 59/7-8 .. 44
Figure V.9 : Evolution de la teneur en nitrates pour 3 ouvrages de l’aquiclude à niveaux aquifères du Dévonien inférieur de 1998 à 2002 .. 44
Figure V.10 : Evolution de la teneur en nitrates pour la source « REVOZ 1 » de 1998 à 2004 45
Figure V.11 : Evolution de la teneur en nitrates pour le « PUI TS SPINET » de 1998 à 2002......................46
Figure V.12 : Etat des masses d'eau pour l'année 2008 et causes de leur dégradation.
Localisation de la carte de Grupont – Saint-Hubert ..52
Figure VI.1 : Répartition des ouvrages entre les différentes unités hydrogéologiques de la carte Grupont – Saint-Hubert ..53
Figure VI.2 : Volumes prélevés entre 2007 et 2012 par les captages de distribution publique sur la carte Grupont – Saint-Hubert ..54
Figure VII.1 : Situation du puits « BOIS COLLE » au sud de Tellin ..58
Figure VIII.1 : Zones de protection en Région Wallonne ...60
Figure VIII.2 : Situation des zones de prévention à définir ou arrêtées sur la planche Grupont – Saint-Hubert..63
ANNEXE 3 : LISTE DES TABLEAUX

Tableau III.1 : Tableau lithostratigraphique de la carte Grupont – Saint-Hubert d’après Forir (1900) 10

Tableau IV.1 : Porosité totale, porosité efficace et perméabilité des principaux types de roches
d’après Castany, 1998) .. 18

Tableau IV.2 : Tableau lithostratigraphique et des unités hydrogéologiques de la région de
Grupont – Saint-Hubert .. 20

Tableau V.1 : Résultats des analyses chimiques pour l’aquiclude à niveaux aquifères du
Dévonien inférieur .. 35

Tableau V.2 : Résultats des analyses chimiques pour l’aquitard du Dévonien inférieur 37

Tableau V.3 : Résultats des analyses chimiques pour l’aquitard de l’Eifelien .. 38

Tableau V.4 : Résultats des analyses chimiques pour l’aquiclude de l’Eifelien... 40

Tableau V.5 : Résultats des analyses microbiologiques (avant traitement) pour quelques
ouvrages de la région de Grupont – Saint-Hubert .. 47

Tableau V.6 : Teneurs en pesticides principaux (famille des herbicides) pour quelques captages
de la région de Grupont – Saint-Hubert .. 48

Tableau V.7 : Teneurs en métaux lourds pour quelques ouvrages de la région de Grupont – Saint-
Hubert .. 49

Tableau V.8 : Valeurs seuils des paramètres chimiques intervenant dans la dégradation des
masses d’eau souterraines ... 50

Tableau VII.1 : Valeurs du coefficient de perméabilité en fonction de la granulométrie (Castany,
1998).. 57

Tableau VII.2 : Intervalle de valeurs indicatives pour la conductivité hydraulique de différentes
lithologies (échelles macroscopique et mégascopique) (Dassargues, 2010) .. 57

Tableau VII.3 : Intervalle de valeurs indicatives pour la porosité (n) et la porosité effective de
drainage (nₑ) de différentes lithologies (échelles macroscopique et mégascopique) (Dassargues,
2010) ... 58

Tableau VIII.1 : Zones de prévention approuvées par arrêté ministériel sur la planche 59/7-8 63

Tableau VIII.2 : Liste des ouvrages en attente d’une zone de prévention au 31/01/2014 64
ANNEXE 4 : COORDONNÉES GÉOGRAPHIQUES DES OUVRAGES CITÉS DANS LA NOTICE

<table>
<thead>
<tr>
<th>NOM</th>
<th>TYPE</th>
<th>X</th>
<th>Y</th>
<th>PROFONDEUR (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOIS COLLE</td>
<td>Puits de distribution publique</td>
<td>210720</td>
<td>84380</td>
<td>90</td>
</tr>
<tr>
<td>BOURSE FONTAINE</td>
<td>Drain</td>
<td>218000</td>
<td>84400</td>
<td>-</td>
</tr>
<tr>
<td>CAPTAGE BOULARD</td>
<td>Drain</td>
<td>224264</td>
<td>78822</td>
<td>-</td>
</tr>
<tr>
<td>CAPTAGE LEBLICQ</td>
<td>Drain</td>
<td>224835</td>
<td>78850</td>
<td>-</td>
</tr>
<tr>
<td>CHEMIN DE LA CHAPELLE-FRAITE</td>
<td>Puits de distribution publique</td>
<td>217365</td>
<td>80808</td>
<td>65</td>
</tr>
<tr>
<td>COLLEGE D'ALZON</td>
<td>Puits privé</td>
<td>213650</td>
<td>86900</td>
<td>48</td>
</tr>
<tr>
<td>FANGE DE SARWET</td>
<td>Source</td>
<td>225050</td>
<td>78660</td>
<td>-</td>
</tr>
<tr>
<td>GERMAINVAUX</td>
<td>Drain</td>
<td>218882</td>
<td>81760</td>
<td>2</td>
</tr>
<tr>
<td>HALVOYMONTP</td>
<td>Source</td>
<td>210851</td>
<td>79813</td>
<td>-</td>
</tr>
<tr>
<td>LARGE FONTAINE</td>
<td>Drain</td>
<td>211061</td>
<td>79317</td>
<td>-</td>
</tr>
<tr>
<td>LE SARTAY 2</td>
<td>Puits privé</td>
<td>216110</td>
<td>84040</td>
<td>26</td>
</tr>
<tr>
<td>LES AWYS</td>
<td>Puits privé</td>
<td>216195</td>
<td>84090</td>
<td>40</td>
</tr>
<tr>
<td>LES LOGES</td>
<td>Puits de distribution publique</td>
<td>213940</td>
<td>78278</td>
<td>37</td>
</tr>
<tr>
<td>MIRWART</td>
<td>Source</td>
<td>217122</td>
<td>84185</td>
<td>-</td>
</tr>
<tr>
<td>PARC OU FONTAINE ST HUBERT</td>
<td>Source</td>
<td>222550</td>
<td>80200</td>
<td>-</td>
</tr>
<tr>
<td>PARFONDRY</td>
<td>Source</td>
<td>216700</td>
<td>82600</td>
<td>-</td>
</tr>
<tr>
<td>PAVILLON DE CHASSE</td>
<td>Puits privé</td>
<td>211567</td>
<td>84735</td>
<td>68</td>
</tr>
<tr>
<td>PIERRE AU CHARME</td>
<td>Drain</td>
<td>211042</td>
<td>79575</td>
<td>-</td>
</tr>
<tr>
<td>PLAINE HAYES</td>
<td>Drain</td>
<td>225010</td>
<td>80228</td>
<td>-</td>
</tr>
<tr>
<td>PUITS HENNEAUX</td>
<td>Puits privé</td>
<td>216756</td>
<td>85023</td>
<td>47</td>
</tr>
<tr>
<td>PUITS LIEGEOSIS</td>
<td>Puits privé</td>
<td>213785</td>
<td>86463</td>
<td>15</td>
</tr>
<tr>
<td>PUITS SPINET</td>
<td>Puits de distribution publique</td>
<td>214399</td>
<td>86740</td>
<td>48</td>
</tr>
<tr>
<td>REVOZ 1</td>
<td>Drain</td>
<td>211982</td>
<td>83935</td>
<td>-</td>
</tr>
<tr>
<td>REVOZ 2</td>
<td>Drain</td>
<td>211925</td>
<td>83889</td>
<td>-</td>
</tr>
<tr>
<td>REVOZ 3</td>
<td>Drain</td>
<td>211877</td>
<td>83958</td>
<td>-</td>
</tr>
<tr>
<td>ROUTE CHAMPLON-FANGE AUX GETS</td>
<td>Drain</td>
<td>223390</td>
<td>81830</td>
<td>-</td>
</tr>
<tr>
<td>SCAYRE OU LE PETIT MACON</td>
<td>Source</td>
<td>221590</td>
<td>78260</td>
<td>-</td>
</tr>
<tr>
<td>SEPT FONTAINE</td>
<td>Drain</td>
<td>222640</td>
<td>80390</td>
<td>-</td>
</tr>
</tbody>
</table>